Scientific Papers

Comparing regional brain uptake of incretin receptor agonists after intranasal delivery in CD-1 mice and the APP/PS1 mouse model of Alzheimer’s disease | Alzheimer’s Research & Therapy


  • 2023 Alzheimer’s disease facts and figures. Alzheimer’s & dementia: the journal of the Alzheimer’s Association. 2023;19(4):1598 – 695.

  • Jellinger KA. Neuropathological assessment of the Alzheimer spectrum. J Neural Transm (Vienna). 2020;127(9):1229–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao Q, Ang TFA, DeCarli C, Auerbach SH, Devine S, Stein TD, et al. Association of Chronic Low-grade inflammation with risk of Alzheimer Disease in ApoE4 carriers. JAMA Netw Open. 2018;1(6):e183597.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sosa-Ortiz AL, Acosta-Castillo I, Prince MJ. Epidemiology of dementias and Alzheimer’s disease. Arch Med Res. 2012;43(8):600–8.

    Article 
    PubMed 

    Google Scholar
     

  • Sims JR, Zimmer JA, Evans CD, Lu M, Ardayfio P, Sparks J, et al. Donanemab in early symptomatic Alzheimer Disease: the TRAILBLAZER-ALZ 2 Randomized Clinical Trial. JAMA. 2023;330(6):512–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, et al. Lecanemab in Early Alzheimer’s Disease. N Engl J Med. 2023;388(1):9–21.

    Article 
    PubMed 

    Google Scholar
     

  • Filippi M, Cecchetti G, Spinelli EG, Vezzulli P, Falini A, Agosta F. Amyloid-related imaging abnormalities and beta-amyloid-targeting antibodies: a systematic review. JAMA Neurol. 2022;79(3):291–304.

    Article 
    PubMed 

    Google Scholar
     

  • Alves F, Kalinowski P, Ayton S. Accelerated brain volume loss caused by anti-beta-amyloid drugs: a systematic review and Meta-analysis. Neurology. 2023;100(20):e2114–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Athar T, Al Balushi K, Khan SA. Recent advances on drug development and emerging therapeutic agents for Alzheimer’s disease. Mol Biol Rep. 2021;48(7):5629–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu TW, Lane HY, Lin CH. Novel Therapeutic Approaches for Alzheimer’s Disease: An Updated Review. Int J Mol Sci. 2021;22(15).

  • Cummings J, Zhou Y, Lee G, Zhong K, Fonseca J, Cheng F. Alzheimer’s disease drug development pipeline: 2023. Alzheimer’s Dementia: Translational Res Clin Interventions. 2023;9(2):e12385.


    Google Scholar
     

  • Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Investig. 2012;122(4):1316–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu Xea. Serine 616 phosphorylation of insulin receptor substrate-1 (IRS-1 pS616) pathology in hippocampal field CA1 as a biomarker of Alzheimer’ disease (AD) verified in 82 cases from 3 brain banks using artificial intelligence (AI)-based image analysis. Abstract PSTR 198. 2023;Soceity for Neuroscience Meeting(Washington, D.C.).

  • Rhea EM, Leclerc M, Yassine HN, Capuano AW, Tong H, Petyuk VA et al. State of the Science on Brain Insulin Resistance and Cognitive Decline Due to Alzheimer’s Disease. Aging Dis. 2023.

  • Sedzikowska A, Szablewski L. Insulin and Insulin Resistance in Alzheimer’s Disease. Int J Mol Sci. 2021;22(18).

  • Colin IM, Szczepanski LW, Gerard AC, Elosegi JA. Emerging evidence for the use of Antidiabetic Drugs, glucagon-like peptide 1 receptor agonists, for the treatment of Alzheimer’s Disease. touchREV Endocrinol. 2023;19(1):16–24.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Folch J, Olloquequi J, Ettcheto M, Busquets O, Sanchez-Lopez E, Cano A, et al. The involvement of peripheral and brain insulin resistance in late Onset Alzheimer’s dementia. Front Aging Neurosci. 2019;11:236.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cersosimo E, DeFronzo RA. Insulin resistance and endothelial dysfunction: the road map to cardiovascular diseases. Diabetes Metab Res Rev. 2006;22(6):423–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kellar D, Craft S. Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol. 2020;19(9):758–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamamoto N, Matsubara T, Sobue K, Tanida M, Kasahara R, Naruse K, et al. Brain insulin resistance accelerates Abeta fibrillogenesis by inducing GM1 ganglioside clustering in the presynaptic membranes. J Neurochem. 2012;121(4):619–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao WQ, Lacor PN, Chen H, Lambert MP, Quon MJ, Krafft GA, et al. Insulin receptor dysfunction impairs cellular clearance of neurotoxic oligomeric a{beta}. J Biol Chem. 2009;284(28):18742–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vandal M, Bourassa P, Calon F. Can insulin signaling pathways be targeted to transport Abeta out of the brain? Front Aging Neurosci. 2015;7:114.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tokutake T, Kasuga K, Yajima R, Sekine Y, Tezuka T, Nishizawa M, et al. Hyperphosphorylation of Tau induced by naturally secreted amyloid-beta at nanomolar concentrations is modulated by insulin-dependent Akt-GSK3beta signaling pathway. J Biol Chem. 2012;287(42):35222–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nistico R, Cavallucci V, Piccinin S, Macri S, Pignatelli M, Mehdawy B, et al. Insulin receptor beta-subunit haploinsufficiency impairs hippocampal late-phase LTP and recognition memory. Neuromolecular Med. 2012;14(4):262–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghasemi R, Haeri A, Dargahi L, Mohamed Z, Ahmadiani A. Insulin in the brain: sources, localization and functions. Mol Neurobiol. 2013;47(1):145–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grillo CA, Piroli GG, Lawrence RC, Wrighten SA, Green AJ, Wilson SP, et al. Hippocampal insulin resistance impairs spatial learning and synaptic plasticity. Diabetes. 2015;64(11):3927–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction. Nat Rev Neurosci. 2015;16(11):660–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Milstein JL, Ferris HA. The brain as an insulin-sensitive metabolic organ. Mol Metab. 2021;52:101234.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Q, Wang Z, Cao J, Dong Y, Chen Y. The Role of Insulin Signaling in Hippocampal-Related Diseases: A Focus on Alzheimer’s Disease. Int J Mol Sci. 2022;23(22).

  • Derakhshan F, Toth C. Insulin and the brain. Curr Diabetes Rev. 2013;9(2):102–16.

    PubMed 

    Google Scholar
     

  • Rhea EM, Banks WA, Raber J. Insulin Resistance in Peripheral tissues and the brain: a tale of two sites. Biomedicines. 2022;10(7).

  • Meng L, Li XY, Shen L, Ji HF. Type 2 diabetes Mellitus drugs for Alzheimer’s Disease: current evidence and Therapeutic opportunities. Trends Mol Med. 2020;26(6):597–614.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang JJ. Brain insulin resistance and the therapeutic value of insulin and insulin-sensitizing drugs in Alzheimer’s disease neuropathology. Acta Neurol Belg. 2022;122(5):1135–42.

    Article 
    PubMed 

    Google Scholar
     

  • Goodarzi G, Tehrani SS, Fana SE, Moradi-Sardareh H, Panahi G, Maniati M, et al. Crosstalk between Alzheimer’s disease and diabetes: a focus on anti-diabetic drugs. Metab Brain Dis. 2023;38(6):1769–800.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mantik KEK, Kim S, Gu B, Moon S, Kwak HB, Park DH et al. Repositioning of anti-diabetic drugs against Dementia: insight from molecular perspectives to clinical trials. Int J Mol Sci. 2023;24(14).

  • Pradhan SP, Sahu PK, Behera A. New insights toward molecular and nanotechnological approaches to antidiabetic agents for Alzheimer’s disease. Mol Cell Biochem. 2023;478(12):2739–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gupta A, Bisht B, Dey CS. Peripheral insulin-sensitizer drug metformin ameliorates neuronal insulin resistance and Alzheimer’s-like changes. Neuropharmacology. 2011;60(6):910–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruegsegger GN, Vanderboom PM, Dasari S, Klaus KA, Kabiraj P, McCarthy CB et al. Exercise and metformin counteract altered mitochondrial function in the insulin-resistant brain. JCI Insight. 2019;4(18).

  • Pipatpiboon N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. PPARgamma agonist improves neuronal insulin receptor function in hippocampus and brain mitochondria function in rats with insulin resistance induced by long term high-fat diets. Endocrinology. 2012;153(1):329–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu SH, Jiang T, Yang SS, Yang Y. Pioglitazone ameliorates intracerebral insulin resistance and tau-protein hyperphosphorylation in rats with type 2 diabetes. Exp Clin Endocrinol Diabetes. 2013;121(4):220–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sa-Nguanmoo P, Tanajak P, Kerdphoo S, Jaiwongkam T, Pratchayasakul W, Chattipakorn N, et al. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol Appl Pharmacol. 2017;333:43–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kullmann S, Hummel J, Wagner R, Dannecker C, Vosseler A, Fritsche L, et al. Empagliflozin improves insulin sensitivity of the hypothalamus in humans with prediabetes: a Randomized, Double-Blind, Placebo-Controlled, phase 2 trial. Diabetes Care. 2022;45(2):398–406.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Talbot KaW H-Y. Developing CNS therapeutics for brain insulin resistance in Alzheimer’s disease (AD) and mild cognitive impairment (MCI). Alzheimer’s Dement. 2020;16(3):e039514.

    Article 

    Google Scholar
     

  • Nowell J, Blunt E, Edison P. Incretin and insulin signaling as novel therapeutic targets for Alzheimer’s and Parkinson’s disease. Mol Psychiatry. 2023;28(1):217–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu CY, Ouk M, Wong YY, Anita NZ, Edwards JD, Yang P, et al. Relationships between memory decline and the use of metformin or DPP4 inhibitors in people with type 2 diabetes with normal cognition or Alzheimer’s disease, and the role APOE carrier status. Alzheimer’s Dement J Alzheimer’s Assoc. 2020;16(12):1663–73.

    Article 

    Google Scholar
     

  • Luchsinger JA, Perez T, Chang H, Mehta P, Steffener J, Pradabhan G, et al. Metformin in amnestic mild cognitive impairment: results of a pilot randomized Placebo Controlled Clinical Trial. J Alzheimers Dis. 2016;51(2):501–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koenig AM, Mechanic-Hamilton D, Xie SX, Combs MF, Cappola AR, Xie L, et al. Effects of the insulin sensitizer Metformin in Alzheimer Disease: Pilot Data from a Randomized Placebo-controlled crossover study. Alzheimer Dis Assoc Disord. 2017;31(2):107–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson ML, Pfeifer JA, Hickey JP, Collins AE, Kalisch BE. Exploring Rosiglitazone’s Potential to Treat Alzheimer’s Disease through the Modulation of Brain-Derived Neurotrophic Factor. Biology (Basel). 2023;12(7).

  • Saunders AM, Burns DK, Gottschalk WK. Reassessment of Pioglitazone for Alzheimer’s Disease. Front Neurosci. 2021;15:666958.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin HC, Chung CH, Chen LC, Wang JY, Chen CC, Huang KY, et al. Pioglitazone use increases risk of Alzheimer’s disease in patients with type 2 diabetes receiving insulin. Sci Rep. 2023;13(1):6625.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang H, Shao H, Shaaban CE, Yang K, Brown J, Anton S, et al. Newer glucose-lowering drugs and risk of dementia: a systematic review and meta-analysis of observational studies. J Am Geriatr Soc. 2023;71(7):2096–106.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Giorgi R, Koychev I, Adler AI, Cowen PJ, Harmer CJ, Harrison PJ et al. 12-month neurological and psychiatric outcomes of semaglutide use for type 2 diabetes: a propensity-score matched cohort study. eClinicalMedicine. 2024:102726.

  • Norgaard CH, Friedrich S, Hansen CT, Gerds T, Ballard C, Moller DV, et al. Treatment with glucagon-like peptide-1 receptor agonists and incidence of dementia: data from pooled double-blind randomized controlled trials and nationwide disease and prescription registers. Alzheimer’s Dementia: Translational Res Clin Interventions. 2022;8(1):e12268.


    Google Scholar
     

  • Siao WZ, Lin TK, Huang JY, Tsai CF, Jong GP. The association between sodium-glucose cotransporter 2 inhibitors and incident dementia: a nationwide population-based longitudinal cohort study. Diab Vasc Dis Res. 2022;19(3):14791641221098168.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wium-Andersen IK, Osler M, Jorgensen MB, Rungby J, Wium-Andersen MK. Antidiabetic medication and risk of dementia in patients with type 2 diabetes: a nested case-control study. Eur J Endocrinol. 2019;181(5):499–507.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou B, Zissimopoulos J, Nadeem H, Crane MA, Goldman D, Romley JA. Association between exenatide use and incidence of Alzheimer’s disease. Alzheimer’s Dementia: Translational Res Clin Interventions. 2021;7(1):e12139.


    Google Scholar
     

  • Akimoto H, Negishi A, Oshima S, Wakiyama H, Okita M, Horii N, et al. Antidiabetic drugs for the risk of Alzheimer Disease in patients with type 2 DM using FAERS. Am J Alzheimers Dis Other Demen. 2020;35:1533317519899546.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang ZQ, Holscher C. GIP has neuroprotective effects in Alzheimer and Parkinson’s disease models. Peptides. 2020;125:170184.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu XY, Zhang N, Zhang SX, Xu P. Potential new therapeutic target for Alzheimer’s disease: glucagon-like peptide-1. Eur J Neurosci. 2021;54(10):7749–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17(6):819–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheang JY, Moyle PM. Glucagon-like Peptide-1 (GLP-1)-Based therapeutics: current Status and Future opportunities beyond type 2 diabetes. ChemMedChem. 2018;13(7):662–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reich N, Holscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer’s and Parkinson’s disease: an in-depth review. Front Neurosci. 2022;16:970925.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cork SC, Richards JE, Holt MK, Gribble FM, Reimann F, Trapp S. Distribution and characterisation of glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol Metab. 2015;4(10):718–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paratore S, Ciotti MT, Basille M, Vaudry D, Gentile A, Parenti R, et al. Gastric inhibitory polypeptide and its receptor are expressed in the central nervous system and support neuronal survival. Cent Nerv Syst Agents Med Chem. 2011;11(3):210–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salameh TS, Rhea EM, Talbot K, Banks WA. Brain uptake pharmacokinetics of incretin receptor agonists showing promise as Alzheimer’s and Parkinson’s disease therapeutics. Biochem Pharmacol. 2020;180:114187.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rhea EM, Babin A, Thomas P, Omer M, Weaver R, Hansen K et al. Brain uptake pharmacokinetics of albiglutide, dulaglutide, tirzepatide, and DA5-CH in the search for new treatments of Alzheimer’s and Parkinson’s diseases. Tissue Barriers. 2023:2292461.

  • Aldhaleei WA, Abegaz TM, Bhagavathula AS. Glucagon-like Peptide-1 receptor agonists Associated Gastrointestinal adverse events: a Cross-sectional Analysis of the National Institutes of Health all of us Cohort. Pharmaceuticals (Basel). 2024;17(2).

  • Gorgojo-Martinez JJ, Mezquita-Raya P, Carretero-Gomez J, Castro A, Cebrian-Cuenca A, de Torres-Sanchez A et al. Clinical recommendations to manage gastrointestinal adverse events in patients treated with Glp-1 receptor agonists: a Multidisciplinary Expert Consensus. J Clin Med. 2022;12(1).

  • Liu L, Chen J, Wang L, Chen C, Chen L. Association between different GLP-1 receptor agonists and gastrointestinal adverse reactions: a real-world disproportionality study based on FDA adverse event reporting system database. Front Endocrinol (Lausanne). 2022;13:1043789.

    Article 
    PubMed 

    Google Scholar
     

  • Rhea EM, Salameh TS, Banks WA. Routes for the delivery of insulin to the central nervous system: a comparative review. Exp Neurol. 2019;313:10–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hallschmid M. Intranasal insulin for Alzheimer’s Disease. CNS Drugs. 2021;35(1):21–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rhea EM, Humann SR, Nirkhe S, Farr SA, Morley JE, Banks WA. Intranasal Insulin Transport is preserved in aged SAMP8 mice and is altered by albumin and insulin receptor inhibition. J Alzheimers Dis. 2017;57(1):241–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lochhead JJ, Kellohen KL, Ronaldson PT, Davis TP. Distribution of insulin in trigeminal nerve and brain after intranasal administration. Sci Rep. 2019;9(1):2621.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiao SS, Bu XL, Liu YH, Zhu C, Wang QH, Shen LL, et al. Sex Dimorphism Profile of Alzheimer’s Disease-Type pathologies in an APP/PS1 mouse model. Neurotox Res. 2016;29(2):256–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Feng Y, Wu W, Zhao J, Fu C, Li Y, et al. Sex differences between APPswePS1dE9 mice in A-beta accumulation and pancreatic islet function during the development of Alzheimer’s disease. Lab Anim. 2016;50(4):275–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eikelboom WS, Pan M, Ossenkoppele R, Coesmans M, Gatchel JR, Ismail Z, et al. Sex differences in neuropsychiatric symptoms in Alzheimer’s disease dementia: a meta-analysis. Alzheimers Res Ther. 2022;14(1):48.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Claxton A, Baker LD, Wilkinson CW, Trittschuh EH, Chapman D, Watson GS, et al. Sex and ApoE genotype differences in treatment response to two doses of intranasal insulin in adults with mild cognitive impairment or Alzheimer’s disease. J Alzheimers Dis. 2013;35(4):789–97.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel JC, Decker H, et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Abeta oligomers. J Clin Investig. 2012;122(4):1339–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talbot K, Wang HY. The nature, significance, and glucagon-like peptide-1 analog treatment of brain insulin resistance in Alzheimer’s disease. Alzheimer’s Dement J Alzheimer’s Assoc. 2014;10(1 Suppl):S12–25.


    Google Scholar
     

  • Trinchese F, Liu S, Battaglia F, Walter S, Mathews PM, Arancio O. Progressive age-related development of Alzheimer-like pathology in APP/PS1 mice. Ann Neurol. 2004;55(6):801–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D, Stoltze L, et al. Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 2006;7(9):940–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia-Alloza M, Robbins EM, Zhang-Nunes SX, Purcell SM, Betensky RA, Raju S, et al. Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol Dis. 2006;24(3):516–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Szu JI, Obenaus A. Cerebrovascular phenotypes in mouse models of Alzheimer’s disease. J Cereb Blood flow Metabolism: Official J Int Soc Cereb Blood Flow Metabolism. 2021;41(8):1821–41.

    Article 
    CAS 

    Google Scholar
     

  • Poduslo JF, Curran GL, Wengenack TM, Malester B, Duff K. Permeability of proteins at the blood-brain barrier in the normal adult mouse and double transgenic mouse model of Alzheimer’s disease. Neurobiol Dis. 2001;8(4):555–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Do TM, Alata W, Dodacki A, Traversy MT, Chacun H, Pradier L, et al. Altered cerebral vascular volumes and solute transport at the blood-brain barriers of two transgenic mouse models of Alzheimer’s disease. Neuropharmacology. 2014;81:311–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rhea EM, Hansen K, Pemberton S, Torres ERS, Holden S, Raber J, et al. Effects of apolipoprotein E isoform, sex, and diet on insulin BBB pharmacokinetics in mice. Sci Rep. 2021;11(1):18636.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glowinski J, Iversen LL. Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. J Neurochem. 1966;13(8):655–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Braak H, Rub U, Schultz C, Del Tredici K. Vulnerability of cortical neurons to Alzheimer’s and Parkinson’s diseases. J Alzheimers Dis. 2006;9(3 Suppl):35–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monney M, Jornayvaz FR, Gariani K. GLP-1 receptor agonists effect on cognitive function in patients with and without type 2 diabetes. Diabetes Metab. 2023;49(5):101470.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nowell J, Blunt E, Gupta D, Edison P. Antidiabetic agents as a novel treatment for Alzheimer’s and Parkinson’s disease. Ageing Res Rev. 2023;89:101979.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holscher C. Brain insulin resistance: role in neurodegenerative disease and potential for targeting. Expert Opin Investig Drugs. 2020;29(4):333–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holscher C. Glucagon-like peptide 1 and glucose-dependent insulinotropic peptide hormones and novel receptor agonists protect synapses in Alzheimer’s and Parkinson’s diseases. Front Synaptic Neurosci. 2022;14:955258.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Velazquez R, Tran A, Ishimwe E, Denner L, Dave N, Oddo S, et al. Central insulin dysregulation and energy dyshomeostasis in two mouse models of Alzheimer’s disease. Neurobiol Aging. 2017;58:1–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez-Ferreras L, Eerola K, Mishra D, Shevchouk OT, Richard JE, Nilsson FH, et al. GLP-1 modulates the supramammillary nucleus-lateral hypothalamic neurocircuit to control ingestive and motivated behavior in a sex divergent manner. Mol Metab. 2019;20:178–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schneider AL, Martins-Silva R, Kaizeler A, Saraiva-Agostinho N, Barbosa-Morais NL. voyAGEr: free web interface for the analysis of age-related gene expression alterations in human tissues. Cold Spring Harbor Laboratory; 2022.

  • Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34(36):11929–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with Mouse. Neuron. 2016;89(1):37–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rhea EM, Rask-Madsen C, Banks WA. Insulin transport across the blood-brain barrier can occur independently of the insulin receptor. J Physiol. 2018;596(19):4753–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rhea EM, Salameh TS, Gray S, Niu J, Banks WA, Tong J. Ghrelin transport across the blood-brain barrier can occur independently of the growth hormone secretagogue receptor. Mol Metab. 2018;18:88–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link