Scientific Papers

The impact of sex on gene expression in the brain of schizophrenic patients: a systematic review and meta-analysis of transcriptomic studies | Biology of Sex Differences


  • Howes OD, Murray RM. Schizophrenia: an integrated sociodevelopmental-cognitive model. Lancet. 2014;383:1677–87.

    Article 
    PubMed 

    Google Scholar
     

  • Jauhar S, Johnstone M, McKenna PJ, Schizophrenia. Lancet. 2022;399:473–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kahn RS, Sommer IE, Murray RM, Meyer-Lindenberg A, Weinberger DR, Cannon TD, et al. Schizophrenia Nat Rev Dis Primers. 2015;1:15067.

    Article 
    PubMed 

    Google Scholar
     

  • Kaalund SS, Newburn EN, Ye T, Tao R, Li C, Deep-Soboslay A, et al. Contrasting changes in DRD1 and DRD2 splice variant expression in schizophrenia and affective disorders, and associations with SNPs in postmortem brain. Mol Psychiatry. 2014;19:1258–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu W, MacDonald ML, Elswick DE, Sweet RA. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann N Y Acad Sci. 2015;1338:38–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt MJ, Mirnics K, Neurodevelopment. GABA system dysfunction, and schizophrenia. Neuropsychopharmacology. 2015;40:190–206.

    Article 
    PubMed 

    Google Scholar
     

  • Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    Article 
    PubMed Central 

    Google Scholar
     

  • Giordano GM, Bucci P, Mucci A, Pezzella P, Galderisi S. Gender differences in clinical and psychosocial features among persons with schizophrenia: a mini review. Front Psychiatry. 2021;12:789179.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aleman A, Kahn RS, Selten J-P. Sex differences in the risk of schizophrenia: evidence from meta-analysis. Arch Gen Psychiatry. 2003;60:565–71.

    Article 
    PubMed 

    Google Scholar
     

  • Taylor R, Langdon R. Understanding gender differences in schizophrenia: a review of the literature. Curr Psychiatry Rev. 2006;2:255–65.

    Article 
    CAS 

    Google Scholar
     

  • Qin W, Liu C, Sodhi M, Lu H. Meta-analysis of sex differences in gene expression in schizophrenia. BMC Syst Biol. 2016;10(Suppl 1):9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collado-Torres L, Burke EE, Peterson A, Shin J, Straub RE, Rajpurohit A, et al. Regional Heterogeneity in Gene expression, regulation, and coherence in the Frontal Cortex and Hippocampus across Development and Schizophrenia. Neuron. 2019;103:203–e168.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffman GE, Ma Y, Montgomery KS, Bendl J, Jaiswal MK, Kozlenkov A, et al. Sex differences in the human brain transcriptome of cases with Schizophrenia. Biol Psychiatry. 2022;91:92–101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moher D. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement [Internet]. Annals of Internal Medicine. 2009. p. 264. https://doi.org/10.7326/0003-4819-151-4-200908180-00135.

  • Andrews S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

  • Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO et al. Twelve years of SAMtools and BCFtools. Gigascience [Internet]. 2021;10. https://doi.org/10.1093/gigascience/giab008.

  • Anders S, Pyl PT, Huber W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viechtbauer W. Conducting Meta-Analyses inRwith themetaforPackage. J Stat Softw [Internet]. 2010;36. http://www.jstatsoft.org/v36/i03/.

  • DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ochoa D, Hercules A, Carmona M, Suveges D, Gonzalez-Uriarte A, Malangone C, et al. Open targets platform: supporting systematic drug-target identification and prioritisation. Nucleic Acids Res. 2021;49:D1302–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Montaner D, Dopazo J. Multidimensional gene set analysis of genomic data. PLoS ONE. 2010;5:e10348.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia-Alonso L, Holland CH, Ibrahim MM, Turei D, Saez-Rodriguez J. Benchmark and integration of resources for the estimation of human transcription factor activities. Genome Res. 2019;29:1363–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendizabal I, Berto S, Usui N, Toriumi K, Chatterjee P, Douglas C, et al. Cell type-specific epigenetic links to schizophrenia risk in the brain. Genome Biol. 2019;20:135.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pai S, Li P, Killinger B, Marshall L, Jia P, Liao J, et al. Differential methylation of enhancer at IGF2 is associated with abnormal dopamine synthesis in major psychosis. Nat Commun. 2019;10:2046.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu B, Ainsworth RI, Wang Z, Sierra S, Deng C, Callado LF et al. Antipsychotic-induced epigenomic reorganization in frontal cortex samples from individuals with schizophrenia [Internet]. bioRxiv. bioRxiv; 2021. https://doi.org/10.1101/2021.07.14.452426.

  • Perez JM, Berto S, Gleason K, Ghose S, Tan C, Kim T-K, et al. Hippocampal subfield transcriptome analysis in schizophrenia psychosis. Mol Psychiatry. 2021;26:2577–89.

    Article 
    PubMed 

    Google Scholar
     

  • Ramaker RC, Bowling KM, Lasseigne BN, Hagenauer MH, Hardigan AA, Davis NS, et al. Post-mortem molecular profiling of three psychiatric disorders. Genome Med. 2017;9:72.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kohen R, Dobra A, Tracy JH, Haugen E. Transcriptome profiling of human hippocampus dentate gyrus granule cells in mental illness. Transl Psychiatry. 2014;4:e366.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu J, Xu J, Pang L, Zhao H, Li F, Deng Y, et al. Systematically characterizing dysfunctional long intergenic non-coding RNAs in multiple brain regions of major psychosis. Oncotarget. 2016;7:71087–98.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang X, Liu Y, Hahn C-G, Gur RE, Sleiman PMA, Hakonarson H. RNA-seq analysis of amygdala tissue reveals characteristic expression profiles in schizophrenia. Transl Psychiatry. 2017;7:e1203.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merikangas AK, Shelly M, Knighton A, Kotler N, Tanenbaum N, Almasy L. What genes are differentially expressed in individuals with schizophrenia? A systematic review. Mol Psychiatry. 2022;27:1373–83.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lanz TA, Reinhart V, Sheehan MJ, Rizzo SJS, Bove SE, James LC, et al. Postmortem transcriptional profiling reveals widespread increase in inflammation in schizophrenia: a comparison of prefrontal cortex, striatum, and hippocampus among matched tetrads of controls with subjects diagnosed with schizophrenia, bipolar or major depressive disorder. Transl Psychiatry. 2019;9:151.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams JA, Burgess S, Suckling J, Lalousis PA, Batool F, Griffiths SL, et al. Inflammation and brain structure in Schizophrenia and other Neuropsychiatric disorders: a mendelian randomization study. JAMA Psychiatry. 2022;79:498–507.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530:177–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Purves-Tyson TD, Robinson K, Brown AM, Boerrigter D, Cai HQ, Weissleder C, et al. Increased macrophages and C1qA, C3, C4 transcripts in the Midbrain of people with Schizophrenia. Front Immunol. 2020;11:2002.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Comer AL, Jinadasa T, Sriram B, Phadke RA, Kretsge LN, Nguyen TPH, et al. Increased expression of schizophrenia-associated gene C4 leads to hypoconnectivity of prefrontal cortex and reduced social interaction. PLoS Biol. 2020;18:e3000604.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Volk DW, Moroco AE, Roman KM, Edelson JR, Lewis DA. The role of the Nuclear Factor-κB transcriptional complex in cortical Immune activation in Schizophrenia. Biol Psychiatry. 2019;85:25–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang J, Liu F, Wang B, Tang H, Teng Z, Li L, et al. Central and Peripheral changes in FOS expression in Schizophrenia based on genome-wide gene expression. Front Genet. 2019;10:232.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimamoto-Mitsuyama C, Nakaya A, Esaki K, Balan S, Iwayama Y, Ohnishi T, et al. Lipid Pathology of the Corpus Callosum in Schizophrenia and the potential role of Abnormal Gene Regulatory Networks with reduced microglial marker expression. Cereb Cortex. 2021;31:448–62.

    Article 
    PubMed 

    Google Scholar
     

  • Martins-de-Souza D, Maccarrone G, Wobrock T, Zerr I, Gormanns P, Reckow S, et al. Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia. J Psychiatr Res. 2010;44:1176–89.

    Article 
    PubMed 

    Google Scholar
     

  • Nudmamud-Thanoi S, Reynolds GP. The NR1 subunit of the glutamate/NMDA receptor in the superior temporal cortex in schizophrenia and affective disorders. Neurosci Lett. 2004;372:173–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coyle JT, Tsai G, Goff DC. Ionotropic glutamate receptors as therapeutic targets in schizophrenia. Curr Drug Targets CNS Neurol Disord. 2002;1:183–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Osimo EF, Beck K, Reis Marques T, Howes OD. Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. Mol Psychiatry. 2019;24:549–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Onwordi EC, Halff EF, Whitehurst T, Mansur A, Cotel M-C, Wells L, et al. Synaptic density marker SV2A is reduced in schizophrenia patients and unaffected by antipsychotics in rats. Nat Commun. 2020;11:246.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy CE, Walker AK, Weickert CS. Neuroinflammation in schizophrenia: the role of nuclear factor kappa B. Transl Psychiatry. 2021;11:528.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Volk DW, Chitrapu A, Edelson JR, Roman KM, Moroco AE, Lewis DA. Molecular mechanisms and timing of cortical immune activation in schizophrenia. Am J Psychiatry. 2015;172:1112–21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T, et al. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry. 2013;18:206–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Catts VS, Sheedy D, McCrossin T, Kril JJ, Shannon Weickert C. Cortical grey matter volume reduction in people with schizophrenia is associated with neuro-inflammation. Transl Psychiatry. 2016;6:e982.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luza S, Opazo CM, Bousman CA, Pantelis C, Bush AI, Everall IP. The ubiquitin proteasome system and schizophrenia. Lancet Psychiatry. 2020;7:528–37.

    Article 
    PubMed 

    Google Scholar
     

  • Nucifora LG, MacDonald ML, Lee BJ, Peters ME, Norris AL, Orsburn BC, et al. Increased protein insolubility in brains from a subset of patients with Schizophrenia. Am J Psychiatry. 2019;176:730–43.

    Article 
    PubMed 

    Google Scholar
     

  • Nishimura A, Ikemoto K, Satoh K, Yamamoto Y, Rand S, Brinkmann B, et al. The carbohydrate deposits detected by histochemical methods in the molecular layer of the dentate gyrus in the hippocampal formation of patients with schizophrenia, Down’s syndrome and dementia, and aged person. Glycoconj J. 2000;17:815–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schubert KO, Föcking M, Cotter DR. Proteomic pathway analysis of the hippocampus in schizophrenia and bipolar affective disorder implicates 14-3-3 signaling, aryl hydrocarbon receptor signaling, and glucose metabolism: potential roles in GABAergic interneuron pathology. Schizophr Res. 2015;167:64–72.

    Article 
    PubMed 

    Google Scholar
     

  • Altar CA, Jurata LW, Charles V, Lemire A, Liu P, Bukhman Y, et al. Deficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohorts. Biol Psychiatry. 2005;58:85–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bergman O, Karry R, Milhem J, Ben-Shachar D. NDUFV2 pseudogene (NDUFV2P1) contributes to mitochondrial complex I deficits in schizophrenia. Mol Psychiatry. 2020;25:805–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghafouri-Fard S, Eghtedarian R, Taheri M, Beatrix Brühl A, Sadeghi-Bahmani D, Brand S. A review on the expression pattern of non-coding RNAs in patients with Schizophrenia: with a special focus on peripheral blood as a source of expression analysis. Front Psychiatry. 2021;12:640463.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Català-Senent JF, Andreu Z, Hidalgo MR, Soler-Sáez I, Roig FJ, Yanguas-Casás N, et al. A deep transcriptome meta-analysis reveals sex differences in multiple sclerosis. Neurobiol Dis. 2023;181:106113.

    Article 
    PubMed 

    Google Scholar
     

  • López-Cerdán A, Andreu Z, Hidalgo MR, Grillo-Risco R, Català-Senent JF, Soler-Sáez I, et al. Unveiling sex-based differences in Parkinson’s disease: a comprehensive meta-analysis of transcriptomic studies. Biol Sex Differ. 2022;13:68.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Català-Senent JF, Hidalgo MR, Berenguer M, Parthasarathy G, Malhi H, Malmierca-Merlo P, et al. Hepatic steatosis and steatohepatitis: a functional meta-analysis of sex-based differences in transcriptomic studies. Biol Sex Differ. 2021;12:29.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pérez-Díez I, Hidalgo MR, Malmierca-Merlo P, Andreu Z, Romera-Giner S, Farràs R et al. Functional Signatures in Non-Small-Cell Lung Cancer: A Systematic Review and Meta-Analysis of Sex-Based Differences in Transcriptomic Studies. Cancers [Internet]. 2021;13. https://doi.org/10.3390/cancers13010143.

  • Casanova Ferrer F, Pascual M, Hidalgo MR, Malmierca-Merlo P, Guerri C, García-García F. Unveiling Sex-Based Differences in the Effects of Alcohol Abuse: A Comprehensive Functional Meta-Analysis of Transcriptomic Studies. Genes [Internet]. 2020;11. https://doi.org/10.3390/genes11091106.

  • Mikell CB, McKhann GM, Segal S, McGovern RA, Wallenstein MB, Moore H. The hippocampus and nucleus accumbens as potential therapeutic targets for neurosurgical intervention in schizophrenia. Stereotact Funct Neurosurg. 2009;87:256–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajarethinam R, DeQuardo JR, Miedler J, Arndt S, Kirbat R, Brunberg JA, et al. Hippocampus and amygdala in schizophrenia: assessment of the relationship of neuroanatomy to psychopathology. Psychiatry Res. 2001;108:79–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link