Scientific Papers

Methane-cycling microbial communities from Amazon floodplains and upland forests respond differently to simulated climate change scenarios | Environmental Microbiome


  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G. Köppen’s climate classification map for Brazil. Meteorol Z. 2013;22(6):711–28.

    Article 

    Google Scholar
     

  • Alvarez DO, de Souza LF, Mendes LW, de Moraes MT, Tosi M, Venturini AM, et al. Shifts in functional traits and interactions patterns of soil methane-cycling communities following forest-to-pasture conversion in the Amazon Basin. Mol Ecol. 2023;6:66.


    Google Scholar
     

  • Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol. 2015;75(2):129–37.

    Article 

    Google Scholar
     

  • Basso LS, Marani L, Gatti LV, Miller JB, Gloor M, Melack J, et al. Amazon methane budget derived from multi-year airborne observations highlights regional variations in emissions. Commun Earth Environ. 2021;2(1):246.

    Article 

    Google Scholar
     

  • Bento MDS, Barros DJ, Araújo MGDS, Da Róz R, Carvalho GA, do Carmo JB, et al. Active methane processing microbes and the disproportionate role of NC10 phylum in methane mitigation in Amazonian floodplains. Biogeochemistry. 2021;156:293–317.

    Article 
    CAS 

    Google Scholar
     

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camargo OA, Moniz AC, Jorge JA, Valadares JMA. Métodos de análise química, mineralógica e física de solos do Instituto Agronômico de Campinas. Boletim Técnico. 2009;106:77.


    Google Scholar
     

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108(1):4516–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chadburn SE, Aalto T, Aurela M, Baldocchi D, Biasi C, Boike J, et al. Modeled microbial dynamics explain the apparent temperature sensitivity of wetland methane emissions. Glob Biogeochem Cycl. 2020;34(11):678.

    Article 

    Google Scholar
     

  • Chanton JP, Chaser L, Glasser P, Siegel D. Carbon and hydrogen isotopic effects in microbial methane from terrestrial environments. Stable Isotop Biosphere Atmos Interact. 2005;66:85–105.

    Article 

    Google Scholar
     

  • Costello AM, Lidstrom ME. Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol. 1999;65(11):5066–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Covey K, Soper F, Pangala S, Bernardino A, Pagliaro Z, Basso L, et al. Carbon and beyond: the biogeochemistry of climate in a rapidly changing Amazon. Front For Glob Change. 2021;4:11.

    Article 

    Google Scholar
     

  • Danielson RE, Rodrigues JLM. Impacts of land-use change on soil microbial communities and their function in the Amazon Rainforest. Adv Agron. 2022;175:179–258.

    Article 

    Google Scholar
     

  • Dedysh SN, Knief C. Diversity and phylogeny of described aerobic methanotrophs. Methane Biocatalysis Pav Way Sustain. 2018;66:17–42.

    Article 

    Google Scholar
     

  • Dinno A. dunn.test: Dunn’s test of multiple comparisons using rank sums. R package version 1.3.5; 2017.

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature. 2010;464(7288):543–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Evans PN, Boyd JA, Leu AO, Woodcroft BJ, Parks DH, Hugenholtz P, Tyson GW. An evolving view of methane metabolism in the Archaea. Nat Rev Microbiol. 2019;17:219–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science. 2015;350(6259):434–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Evans SE, Wallenstein MD. Climate change alters ecological strategies of soil bacteria. Ecol Lett. 2013;17(2):155–64.

    Article 
    PubMed 

    Google Scholar
     

  • Fassoni-Andrade AC, Fleischmann AS, Papa F, Paiva RCDD, Wongchuig S, Melack JM, et al. Amazon hydrology from space: scientific advances and future challenges. Rev Geophys. 2021;59(4):728.

    Article 

    Google Scholar
     

  • Flores BM, Montoya E, Sakschewski B, Nascimento N, Staal A, Betts RA, et al. Critical transitions in the Amazon forest system. Nature. 2024;626(7999):555–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gabriel GVM, Oliveira LC, Barros DJ, Bento MS, Neu V, Toppa RH, et al. Methane emission suppression in flooded soil from Amazonia. Chemosphere. 2020;250:66.

    Article 

    Google Scholar
     

  • Gedney N, Huntingford C, Comyn-Platt E, Wiltshire A. Significant feedbacks of wetland methane release on climate change and the causes of their uncertainty. Environ Res Lett. 2019;14(8):66.

    Article 

    Google Scholar
     

  • Gontijo JB, Paula FS, Venturini AM, Mandro JA, Bodelier PL, Tsai SM. Insights into the genomic potential of a Methylocystis sp. from Amazonian floodplain sediments. Microorganisms. 2022;10(9):1747.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gontijo JB, Paula FS, Venturini AM, Yoshiura CA, Borges CD, Moura JMS, et al. Not just a methane source: Amazonian floodplain sediments harbor a high diversity of methanotrophs with different metabolic capabilities. Mol Ecol. 2021;30(11):2560–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guerrero-Cruz S, Vaksmaa A, Horn MA, Niemann H, Pijuan M, Ho A. Methanotrophs: discoveries, environmental relevance, and a perspective on current and future applications. Front Microbiol. 2021;12: 678057.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gwak JH, Awala SI, Nguyen NL, Yu WJ, Yang HY, von Bergen M, et al. Sulfur and methane oxidation by a single microorganism. Proc Natl Acad Sci USA. 2022;119(32): e2114799119.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hawkes CV, Keitt TH. Resilience vs. historical contingency in microbial responses to environmental change. Ecol Lett. 2015;18(7):612–25.

    Article 
    PubMed 

    Google Scholar
     

  • He Y, Li M, Perumal V, Feng X, Fang J, Xie J, et al. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat Microbiol. 2016;1(6):1–9.

    Article 

    Google Scholar
     

  • Hernández M, Klose M, Claus P, Bastviken D, Marotta H, Figueiredo V, et al. Structure, function and resilience to desiccation of methanogenic microbial communities in temporarily inundated soils of the Amazon rainforest (Cunia Reserve, Rondonia). Environ Microbiol. 2019;21(5):1702–17.

    Article 
    PubMed 

    Google Scholar
     

  • Hess LL, Melack JM, Affonso AG, Barbosa C, Gastil-Buhl M, Novo EMLM. Wetlands of the Lowland Amazon Basin: extent, vegetative cover, and dual-season inundated area as mapped with JERS-1 synthetic aperture radar. Wetlands. 2015;35(4):745–56.

    Article 

    Google Scholar
     

  • Ho A, Kerckhof FM, Luke C, Reim A, Krause S, Boon N, Bodelier PLE. Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Environ Microbiol Rep. 2013;5(3):335–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holmes AJ, Costello A, Lidstrom ME, Murrell JC. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett. 1995;132(3):203–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • IPCC. Pörtner HO, Roberts DC, Poloczanska ES, Mintenbeck K, Tignor M, Alegría A, et al. Summary for policymakers. IPCC; 2022.

  • Jeffrey LC, Maher DT, Tait DR, Reading MJ, Chiri E, Greening C, Johnston SG. Isotopic evidence for axial tree stem methane oxidation within subtropical lowland forests. New Phytol. 2021;230(6):2200–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Junk WJ, Piedade MTF, Schöngart J, Wittmann F. A classification of major natural habitats of Amazonian white-water river floodplains (várzeas). Wetl Ecol Manag. 2012;20:461–75.

    Article 

    Google Scholar
     

  • Kay M, Wobbrock JO. ARTool: aligned rank transform for nonparametric factorial ANOVAs. R package version 0.10.5; 2018.

  • Keeling CD. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim Cosmochim Acta. 1958;13(4):322–34.

    Article 
    CAS 

    Google Scholar
     

  • Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41(1):66.

    Article 

    Google Scholar
     

  • Knief C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol. 2015;6:1346.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le HTQ, Lee EY. Methanotrophs: Metabolic versatility from utilization of methane to multi-carbon sources and perspectives on current and future applications. Bioresour Technol. 2023;66:129–296.


    Google Scholar
     

  • Lenth R. lsmeans: least-squares means. R package version 2.30-0; 2018.

  • Leu AO, Cai C, McIlroy SJ, Southam G, Orphan VJ, Yuan Z, et al. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. ISME J. 2020;14(4):1030–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu F, Zhang Y, Liang H, Gao D. Resilience of methane cycle and microbial functional genes to drought and flood in an alkaline wetland: a metagenomic analysis. Chemosphere. 2021;265: 129034.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu P, Klose M, Conrad R. Temperature effects on structure and function of the methanogenic microbial communities in two paddy soils and one desert soil. Soil Biol Biochem. 2018;124:236–44.

    Article 

    Google Scholar
     

  • Lyu Z, Shao N, Akinyemi T, Whitman WB. Methanogenesis. Curr Biol. 2018;28:R727–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma K, Lu Y. Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil. FEMS Microbiol Ecol. 2011;75(3):446–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre CA. Climate change, deforestation, and the fate of the Amazon. Science. 2008;319(5860):169–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malyan SK, Bhatia A, Kumar A, Gupta DK, Singh R, Kumar SS, et al. Methane production, oxidation and mitigation: A mechanistic understanding and comprehensive evaluation of influencing factors. Sci Total Environ. 2016;572:874–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mariadassou M, Pichon S, Ebert D. Microbial ecosystems are dominated by specialist taxa. Ecol Lett. 2015;18(9):974–82.

    Article 
    PubMed 

    Google Scholar
     

  • Maus I, Rumming M, Bergmann I, Heeg K, Pohl M, Nettmann E, et al. Characterization of Bathyarchaeota genomes assembled from metagenomes of biofilms residing in mesophilic and thermophilic biogas reactors. Biotechnol Biofuels. 2018;11(1):66.

    Article 

    Google Scholar
     

  • McCalley CK, Woodcroft BJ, Hodgkins SB, Wehr RA, Kim EH, Mondav R, et al. Methane dynamics regulated by microbial community response to permafrost thaw. Nature. 2014;514(7523):478–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8(4): e61217.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendler K, Chen H, Parks DH, Lobb B, Hug LA, Doxey AC. AnnoTree: visualization and exploration of a functionally annotated microbial tree of life. Nucleic Acids Res. 2019;47(9):4442–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merloti LF, Pedrinho A, Mendes LW, Gontijo JB, da Fonseca MDC, Chaves MG, et al. Long-term land use in Amazon influences the dynamic of microbial communities in soil and rhizosphere. Rhizosphere. 2022;21: 100482.

    Article 

    Google Scholar
     

  • Meyer AF, Lipson DA, Martín AP, Schadt CW, Schmidt SK. Molecular and metabolic characterization of cold-tolerant alpine soil Pseudomonas sensu stricto. Appl Environ Microbiol. 2004;70(1):483–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer KM, Morris AH, Webster K, Klein AM, Kroeger ME, Meredith LK, et al. Belowground changes to community structure alter methane-cycling dynamics in Amazonia. Environ Int. 2020;145:66.

    Article 

    Google Scholar
     

  • Mori K, Iino T, Suzuki KI, Yamaguchi K, Kamagata Y. Acetoclastic and NaCl-requiring methanogen “Methanosaeta pelagica” sp. Nov., isolated from marine tidal flat sediment. Appl Environ Microbiol. 2012;78(9):3416–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukhtar H, Wunderlich RF, Muzaffar A, Ansari A, Shipin OV, Cao TND, Lin YP. Soil microbiome feedback to climate change and options for mitigation. Sci Total Environ. 2023;66:163412.

    Article 

    Google Scholar
     

  • Murphy CL, Sheremet A, Dunfield PF, Spear JR, Stepanauskas R, Woyke T, et al. Genomic analysis of the yet-uncultured Binatota reveals broad methylotrophic, alkane-degradation, and pigment production capacities. MBio. 2021;12(3):e00985-21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nkamga VD, Drancourt M. Methanomassiliicoccales. In: Bergey’s manual of systematics of archaea and bacteria, pp 1–2; 2016.

  • NOAA National Centers for Environmental Information. Monthly Global Climate Report for December 2022; 2023. https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202300. Accessed 2 Nov 2023.

  • Oliveira BFA, Bottino MJ, Nobre P, Nobre CA. Deforestation and climate change are projected to increase heat stress risk in the Brazilian Amazon. Commun Earth Environ. 2021;2(1):207.

    Article 

    Google Scholar
     

  • Oksanen J, Guillaume Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version 2.5-1; 2018.

  • Padilla CC, Bristow LA, Sarode N, Garcia-Robledo E, Gómez Ramírez E, Benson CR, et al. NC10 bacteria in marine oxygen minimum zones. ISME J. 2016;10(8):2067–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandit SN, Kolasa J, Cottenie K. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology. 2009;90(8):2253–62.

    Article 
    PubMed 

    Google Scholar
     

  • Pangala SR, Enrich-Prast A, Basso LS, Peixoto RB, Bastviken D, Hornibrook ERC, et al. Large emissions from floodplain trees close the Amazon methane budget. Nature. 2017;552(7684):230–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18(5):1403–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peltoniemi K, Laiho R, Juottonen H, Kiikkilä O, Mäkiranta P, Minkkinen K, et al. Microbial ecology in a future climate: effects of temperature and moisture on microbial communities of two boreal fens. FEMS Microbiol Ecol. 2015;91(7):77.

    Article 

    Google Scholar
     

  • Peng J, Zhou X, Rensing C, Liesack W, Zhu YG. Soil microbial ecology through the lens of metatranscriptomics. Soil Ecol Letters. 2024;6(3):1–15.

    Article 

    Google Scholar
     

  • Philippot L, Chenu C, Kappler A, Rillig MC, Fierer N. The interplay between microbial communities and soil properties. Nat Rev Microbiol. 2023;66:1–14.


    Google Scholar
     

  • Qian H, Zhu X, Huang S, Linquist B, Kuzyakov Y, Wassmann R, et al. Greenhouse gas emissions and mitigation in rice agriculture. Nat Rev Earth Environ. 2023;4(10):716–32.

    Article 
    CAS 

    Google Scholar
     

  • R Core Team. RStudio: Integrated development for R; 2022. Retrieved from http://www.rstudio.com/.

  • Scavino AF, Ji Y, Pump J, Klose M, Claus P, Conrad R. Structure and function of the methanogenic microbial communities in Uruguayan soils shifted between pasture and irrigated rice fields. Environ Microbiol. 2013;15(9):2588–602.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmitz RA, Peeters SH, Versantvoort W, Picone N, Pol A, Jetten MS, Op den Camp HJ. Verrucomicrobial methanotrophs: ecophysiology of metabolically versatile acidophiles. FEMS Microbiol Rev. 2021;45(5):fuab007.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, et al. Fundamentals of microbial community resistance and resilience. Front Microbiol. 2012;3:417.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sorribas MV, Paiva RC, Melack JM, Bravo JM, Jones C, Carvalho L, et al. Projections of climate change effects on discharge and inundation in the Amazon basin. Clim Change. 2016;136(3):555–70.

    Article 
    CAS 

    Google Scholar
     

  • Stahl DA, Amann R. Development and application of nucleic acid probes in bacterial systematics. In: Nucleic acid techniques in bacterial systematics; 1991. 205–48.

  • Steinberg LM, Regan JM. Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl Environ Microbiol. 2008;74(21):6663–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su G, Zopfi J, Yao H, Steinle L, Niemann H, Lehmann MF. Manganese/iron-supported sulfate-dependent anaerobic oxidation of methane by archaea in lake sediments. Limnol Oceanogr. 2020;65(4):863–75.

    Article 
    CAS 

    Google Scholar
     

  • Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J. Global warming and changes in drought. Nat Clim Chang. 2014;4(1):17–22.

    Article 

    Google Scholar
     

  • Venturini AM, Dias NM, Gontijo JB, Yoshiura CA, Paula FS, Meyer KM, et al. Increased soil moisture intensifies the impacts of forest-to-pasture conversion on methane emissions and methane-cycling communities in the Eastern Amazon. Environ Res. 2022;212: 113139.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Venturini AM, Gontijo JB, Mandro JA, Paula FS, Yoshiura CA, da França AG, Tsai SM. Genome-resolved metagenomics reveals novel archaeal and bacterial genomes from Amazonian forest and pasture soils. Microb Genomics. 2022;8(7): 000853.

    Article 
    CAS 

    Google Scholar
     

  • Venturini AM, Nakamura FM, Gontijo JB, da França AG, Yoshiura CA, Mandro JA, Tsai SM. Robust DNA protocols for tropical soils. Heliyon. 2020;6(5):78.

    Article 

    Google Scholar
     

  • Wallenstein MD, Hall EK. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry. 2012;109:35–47.

    Article 

    Google Scholar
     

  • Welander PV, Metcalf WW. Mutagenesis of the C1 oxidation pathway in Methanosarcina barkeri: New insights into the Mtr/Mer bypass pathway. J Bacteriol. 2008;190(6):1928–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whiticar MJ. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol. 1999;161(1–3):291–314.

    Article 
    CAS 

    Google Scholar
     

  • Wickham H, Chang W. ggplot2′: create elegant data visualisations using the grammar of graphics. R package version 3.1.0; 2016.

  • Wittmann F, Householder JE, Piedade MTF, Schöngart J, Demarchi LO, Quaresma AC, Junk WJ. A Review of the ecological and biogeographic differences of Amazonian floodplain forests. Water. 2022;14(21):3360.

    Article 

    Google Scholar
     

  • Xu H, Huang L, Chen J, Zhou H, Wan Y, Qu Q, et al. Changes in soil microbial activity and their linkages with soil carbon under global warming. Catena. 2023;232: 107419.

    Article 
    CAS 

    Google Scholar
     

  • Xu Q, Luo G, Guo J, Xiao Y, Zhang F, Guo S, et al. Microbial generalist or specialist: Intraspecific variation and dormancy potential matter. Mol Ecol. 2022;31(1):161–73.

    Article 
    PubMed 

    Google Scholar
     

  • Yan Z, Ferry JG. Electron bifurcation and confurcation in methanogenesis and reverse methanogenesis. Front Microbiol. 2018;9:66.

    Article 

    Google Scholar
     

  • Yarnes C. δ13C and δ2H measurement of methane from ecological and geological sources by gas chromatography/combustion/pyrolysis isotope-ratio mass spectrometry. Rapid Commun Mass Spectrom. 2013;27(9):1036–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye F, Ma MH, Op den Camp HJM, Chatzinotas A, Li L, Lv MQ, et al. Different recovery processes of soil ammonia oxidizers from flooding disturbance. Microb Ecol. 2018;76(4):1041–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu X, Millet DB, Henze DK, Turner AJ, Delgado AL, Bloom AA, Sheng J. A high-resolution satellite-based map of global methane emissions reveals missing wetland, fossil fuel, and monsoon sources. Atmos Chem Phys. 2023;23(5):3325–46.

    Article 
    CAS 

    Google Scholar
     

  • Zhao Q, Lu Y. Anaerobic oxidation of methane in terrestrial wetlands: the rate, identity and metabolism. Sci Total Environ. 2023;66:1660–49.


    Google Scholar
     

  • Zhou X, Zhang M, Krause SM, Bu X, Gu X, Guo Z, et al. Soil aeration rather than methanotrophic community drives methane uptake under drought in a subtropical forest. Sci Total Environ. 2021;792: 148292.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zinke LA, Evans PN, Santos-Medellín C, Schroeder AL, Parks DH, Varner RK, et al. Evidence for non-methanogenic metabolisms in globally distributed archaeal clades basal to the Methanomassiliicoccales. Environ Microbiol. 2021;23(1):340–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link