Scientific Papers

Telemetry without collars: performance of fur- and ear-mounted satellite tags for evaluating the movement and behaviour of polar bears | Animal Biotelemetry


  • Hooten MB, Johnson DS, McClintock BT, Morales JM. Animal movement: statistical models for telemetry data. Boca Raton: CRC Press; 2017.

    Book 

    Google Scholar
     

  • Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE. A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci U S A. 2008;105:19052–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turchin P. Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. Sunderland: Sinauer Associates; 1998.


    Google Scholar
     

  • Johnson AR, Wiens JA, Milne BT, Crist TO. Animal movements and population dynamics in heterogeneous landscapes. Landsc Ecol. 1992;7:63–75.

    Article 

    Google Scholar
     

  • Morales JM, Moorcroft PR, Matthiopoulos J, Frair JL, Kie JG, Powell RA, Merrill EH, Haydon DT. Building the bridge between animal movement and population dynamics. Philos Trans R Soc Lond, B, Biol Sci. 2010;365:2289–301.

    Article 
    PubMed 

    Google Scholar
     

  • Avgar T, Potts JR, Lewis MA, Boyce MS. Integrated step selection analysis: bridging the gap between resource selection and animal movement. Methods Ecol Evol. 2016;7:619–30.

    Article 

    Google Scholar
     

  • Guisan A, Thuiller W, Zimmermann NE. Habitat suitability and distribution models: with applications in R. Cambridge: Cambridge University Press; 2017.

    Book 

    Google Scholar
     

  • Turchin P. Translating foraging movements in heterogeneous environments into the spatial distribution of foragers. Ecology. 1991;72:1253–66.

    Article 

    Google Scholar
     

  • Tomkiewicz SM, Fuller MR, Kie JG, Bates KK. Global positioning system and associated technologies in animal behaviour and ecological research. Philos Trans R Soc Lond, B, Biol Sci. 2010;365:2163–76.

    Article 
    PubMed 

    Google Scholar
     

  • Kays R, Crofoot MC, Jetz W, Wikelski M. Terrestrial animal tracking as an eye on life and planet. Science. 2015;348:1–9.

    Article 

    Google Scholar
     

  • Allen AM, Singh NJ. Linking movement ecology with wildlife management and conservation. Front Ecol Evol. 2016;3:155.

    Article 

    Google Scholar
     

  • Hays GC, Bailey H, Bograd SJ, Bowen WD, Campagna C, Carmichael RH, et al. Translating marine animal tracking data into conservation policy and management. Trends Ecol Evol. 2019;34:459–73.

    Article 
    PubMed 

    Google Scholar
     

  • Bastille-Rousseau G, Wittemyer G. Characterizing the landscape of movement to identify critical wildlife habitat and corridors. Conserv Biol. 2021;35:346–59.

    Article 
    PubMed 

    Google Scholar
     

  • Davidson S, Bohrer G, Gurarie E, Lapoint S, Mahoney P, Boelman N, et al. Ecological insights from three decades of animal movement tracking across a changing Arctic. Science. 2020;370:712–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2021.

  • Post E, Bhatt US, Bitz CM, Brodie JF, Fulton TL, Hebblewhite M, et al. Ecological consequences of sea-ice decline. Science. 2013;341:519–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stirling I, Derocher AE. Possible impacts of climatic warming on polar bears. Arctic. 1993;46:240–5.

    Article 

    Google Scholar
     

  • Tynan CT, DeMaster DP. Observations and predictions of Arctic climatic change: potential effects on marine mammals. Arctic. 1997;50:308–22.

    Article 

    Google Scholar
     

  • Durner GM, Amstrup SC. Movements of a polar bear from northern Alaska to northern Greenland. Arctic. 1995;48:338–41.

    Article 

    Google Scholar
     

  • Parks EK, Derocher AE, Lunn NJ. Seasonal and annual movement patterns of polar bears on the sea ice of Hudson Bay. Can J Zool. 2006;84:1281–94.

    Article 

    Google Scholar
     

  • Johnson AC, Pongracz JD, Derocher AE. Long-distance movement of a female polar bear from Canada to Russia. Arctic. 2017;70:121–8.

    Article 

    Google Scholar
     

  • Mauritzen M, Derocher AE, Wiig Ø, Belikov SE, Boltunov AN, Edmond H, et al. Using satellite telemetry to define spatial population structure in polar bears in the Norwegian and western Russian Arctic. J Appl Ecol. 2002;39:79–90.

    Article 

    Google Scholar
     

  • Stirling I, Derocher AE. Effects of climate warming on polar bears: a review of the evidence. Glob Chang Biol. 2012;18:2694–706.

    Article 
    PubMed 

    Google Scholar
     

  • Sahanatien V, Derocher AE. Monitoring sea ice habitat fragmentation for polar bear conservation. Anim Conserv. 2012;15:397–406.

    Article 

    Google Scholar
     

  • Auger-Méthé M, Lewis MA, Derocher AE. Home ranges in moving habitats: polar bears and sea ice. Ecography. 2016;39:26–35.

    Article 

    Google Scholar
     

  • Klappstein NJ, Togunov RR, Reimer JR, Lunn NJ, Derocher AE. Patterns of sea ice drift and polar bear (Ursus maritimus) movement in Hudson Bay. Mar Ecol Prog Ser. 2020;641:227–40.

    Article 

    Google Scholar
     

  • Biddlecombe BA, Bayne EM, Lunn NJ, McGeachy D, Derocher AE. Effects of sea ice fragmentation on polar bear migratory movement in Hudson Bay. Mar Ecol Prog Ser. 2021;666:231–41.

    Article 

    Google Scholar
     

  • Laidre KL, Stern H, Born EW, Heagerty P, Atkinson S, Wiig Ø, et al. Changes in winter and spring resource selection by polar bears Ursus maritimus in Baffin Bay over two decades of sea-ice loss. Endanger Species Res. 2018;36:1–14.

    Article 

    Google Scholar
     

  • Laidre KL, Born EW, Atkinson SN, Wiig Ø, Andersen LW, Lunn NJ, et al. Range contraction and increasing isolation of a polar bear subpopulation in an era of sea-ice loss. Ecol Evol. 2018;8:2062–75.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durner GM, Douglas DC, Albeke SE, Whiteman JP, Amstrup SC, Richardson E, et al. Increased Arctic sea ice drift alters adult female polar bear movements and energetics. Glob Chang Biol. 2017;23:3460–73.

    Article 
    PubMed 

    Google Scholar
     

  • Pagano AM, Durner GM, Atwood TC, Douglas DC. Effects of sea ice decline and summer land use on polar bear home range size in the Beaufort Sea. Ecosphere. 2021;12:e03768.

    Article 

    Google Scholar
     

  • Rode KD, Douglas DC, Atwood TC, Durner GM, Wilson RR, Pagano AM. Observed and forecasted changes in land use by polar bears in the Beaufort and Chukchi Seas, 1985–2040. Glob Ecol Conserv. 2022;40:e02319.


    Google Scholar
     

  • Rode KD, Wilson RR, Regehr EV, Martin MS, Douglas DC, Olson J. Increased land use by Chukchi Sea polar bears in relation to changing sea ice conditions. PLoS ONE. 2015;10:e0142213.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pilfold NW, McCall A, Derocher AE, Lunn NJ, Richardson E. Migratory response of polar bears to sea ice loss: to swim or not to swim. Ecography. 2017;40:189–99.

    Article 

    Google Scholar
     

  • Durner GM, Whiteman JP, Harlow HJ, Amstrup SC, Regehr EV, Ben-David M. Consequences of long-distance swimming and travel over deep-water pack ice for a female polar bear during a year of extreme sea ice retreat. Polar Biol. 2011;34:975–84.

    Article 

    Google Scholar
     

  • Pagano AM, Durner GM, Amstrup SC, Simac KS, York GS. Long-distance swimming by polar bears (Ursus maritimus) of the southern Beaufort Sea during years of extensive open water. Can J Zool. 2012;90:663–76.

    Article 

    Google Scholar
     

  • Russell RH. The food habits of polar bears of James Bay and southwest Hudson Bay in summer and autumn. Arctic. 1975;28:117–29.

    Article 

    Google Scholar
     

  • Jonkel C, Smith P, Stirling I, Kolenosky GB. The present status of the polar bear in the James Bay and Belcher Islands area. Canadian Wildlife Service, Occasional Paper No. 26. Ottawa: Canadian Wildlife Service. 1976; 42.

  • Stirling I, Jonkel C, Smith P, Robertson R, Cross R. The ecology of the polar bear (Ursus maritimus) along the western coast of Hudson Bay. Canadian Wildlife Service, Occasional Paper No. 33. Ottawa: Canadian Wildlife Service. 1977; 64.

  • Kolenosky G, Prevett J. Productivity and maternity denning of polar bears in Ontario. Int Conf Bear Res Manag. 1983;5:238–45.


    Google Scholar
     

  • Amstrup SC, Gardner C. Polar bear maternity denning in the Beaufort Sea. J Wildl Manage. 1994;58:1–10.

    Article 

    Google Scholar
     

  • Obbard ME, Walton LR. The importance of polar bear provincial park to the southern Hudson Bay polar bear population in the context of future climate change. Parks and protected areas research in Ontario, 2004: Planning northern parks and protected areas. Proceedings of the Parks Research Forum of Ontario General Meeting, May 4–6, 2004. 2004; 105–16.

  • Derocher AE, Stirling I. Distribution of polar bears (Ursus maritimus) during the ice-free period in western Hudson Bay. Can J Zool. 1990;68:1395–403.

    Article 

    Google Scholar
     

  • Stern HL, Laidre KL. Sea-ice indicators of polar bear habitat. Cryosphere. 2016;10:2027–41.

    Article 

    Google Scholar
     

  • Stirling I, Lunn NJ, Iacozza J. Long-term trends in the population ecology of polar bears in western Hudson Bay in relation to climactic change. Arctic. 1999;52(3):294–306.

    Article 

    Google Scholar
     

  • Gagnon AS, Gough WA. Trends in the dates of ice freeze-up and breakup over Hudson Bay. Canada Arctic. 2005;58(4):370–82.


    Google Scholar
     

  • Laidre KL, Durner GM, Lunn NJ, Regehr EV, Atwood TC, Rode KD, et al. The role of satellite telemetry data in 21st century conservation of polar bears (Ursus maritimus). Front Mar Sci. 2022;9:816666.

    Article 

    Google Scholar
     

  • Togunov RR, Derocher AE, Lunn NJ, Auger-Méthé M. Drivers of polar bear behavior and the possible effects of prey availability on foraging strategy. Mov Ecol. 2022;10:50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor MK, Akeeagok S, Andriashek D, Barbour W, Born EW, Calvert W, et al. Delineating Canadian and Greenland polar bear (Ursus maritimus) populations by cluster analysis of movements. Can J Zool. 2001;79:690–709.

    Article 

    Google Scholar
     

  • Amstrup SC, Durner GM, McDonald TL, Mulcahy DM, Garner GW. Comparing movement patterns of satellite-tagged male and female polar bears. Can J Zool. 2001;79:2147–58.

    Article 

    Google Scholar
     

  • Pagano AM, Rode KD, Cutting A, Owen MA, Jensen S, Ware JV, et al. Using tri-axial accelerometers to identify wild polar bear behaviors. Endanger Species Res. 2017;32:19–33.

    Article 

    Google Scholar
     

  • Johnson AC, Derocher AE. Variation in habitat use of Beaufort Sea polar bears. Polar Biol. 2020;43:1247–60.

    Article 

    Google Scholar
     

  • Taylor MK. The effect of radio transmitter harnesses on free-ranging polar bears. Int Bear Res Manag. 1986;6:219–21.


    Google Scholar
     

  • Schweinsburg RE, Lee LJ. Movement of four satellite-monitored polar bears in Lancaster Sound, Northwest Territories. Arctic. 1982;35:504–11.


    Google Scholar
     

  • Rode KD, Pagano AM, Bromaghin JF, Atwood TC, Durner GM, Simac KS, et al. Effects of capturing and collaring on polar bears: findings from long-term research on the southern Beaufort Sea population. Wildl Res. 2014;41:311–22.

    Article 

    Google Scholar
     

  • Wiig Ø, Born EW, Laidre KL, Dietz R, Jensen MV, Durner GM, et al. Performance and retention of lightweight satellite radio tags applied to the ears of polar bears (Ursus maritimus). Anim Biotelemetry. 2017;5:1–11.

    Article 

    Google Scholar
     

  • Mulcahy DM, Garner G. Subcutaneous implantation of satellite transmitters with percutaneous antennae into male polar bears (Ursus maritimus). J Zoo Wildl Med. 1999;30:510–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Wilson RR, St. Martin M, Regehr EV, Rode KD. Intrapopulation differences in polar bear movement and step selection patterns. Mov Ecol. 2022;10(1):25.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amstrup SC, McDonald TL, Durner GM. Using satellite radiotelemetry data to delineate and manage wildlife populations. Wildl Soc Bull. 2004;32:661–79.

    Article 

    Google Scholar
     

  • Henri D, Gilchrist HG, Peacock E. Understanding and managing wildlife in Hudson Bay under a changing climate: some recent contributions from Inuit and Cree ecological knowledge. In: Ferguson SH, Loseto LL, Mallory ML, editors. A Little less arctic: top predators in the World’s Largest Northern Inland Sea, Hudson Bay. Dordrecht: Springer; 2010. p. 267–89.

    Chapter 

    Google Scholar
     

  • Joint Secretariat. Inuvialuit Settlement Region Polar Bear Joint Management Plan Joint Secretariat, Inuvialuit Settlement Region. 2017; 66.

  • Wong PBY, Dyck MG, Murphy RW, Arviat Hunters and Trappers, Ikajutit Hunters and Trappers, Mayukalik Hunters and Trappers. Inuit perspectives of polar bear research: lessons for community-based collaborations. Polar Rec. 2017;53(3):257–70.

    Article 

    Google Scholar
     

  • Thiemann GW, Derocher AE, Cherry SG, Lunn NJ, Peacock E, Sahanatien V. Effects of chemical immobilization on the movement rates of free-ranging polar bears. J Mammal. 2013;94:386–97.

    Article 

    Google Scholar
     

  • Laidre KL, Born EW, Gurarie E, Wiig Ø, Dietz R, Stern H. Females roam while males patrol: divergence in breeding season movements of pack-ice polar bears (Ursus maritimus). Proc Royal Soc B Biol Sci. 2013;280:20122371.

    Article 

    Google Scholar
     

  • Sjors H. Bogs and fens in the Hudson Bay Lowlands. Arctic. 1959;12:2–19.

    Article 

    Google Scholar
     

  • Ritchie JC. The vegetation of northern Manitoba V. Establishing the major zonation. Arctic. 1960;13:210–29.

    Article 

    Google Scholar
     

  • Clark DA, Stirling I. Habitat preferences of polar bears in the Hudson Bay lowlands during late summer and fall. Ursus. 1998;10:243–50.


    Google Scholar
     

  • Hochheim K, Barber DG, Lukovich JV. Changing sea ice conditions in Hudson Bay, 1980–2005. In: Ferguson SH, Loseto LL, Mallory ML, editors. A little less arctic: top predators in the World’s Largest Northern Inland Sea, Hudson Bay. Dordrecht: Springer; 2010. p. 39–51.

    Chapter 

    Google Scholar
     

  • Stewart DB, Barber DG. The ocean-sea ice-atmosphere system of the Hudson Bay complex. In: Ferguson SH, Loseto LL, Mallory ML, editors. A little less arctic: top predators in the World’s Largest Northern Inland Sea, Hudson Bay. Dordrecht: Springer; 2010. p. 1–37.


    Google Scholar
     

  • Stirling I, Spencer C, Andriashek D. Immobilization of polar bears (Ursus maritimus) with Telazol in the Canadian Arctic. J Wildl Dis. 1989;25:159–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Calvert W, Ramsay MA. Evaluation of age determination of polar bears by counts of cementum growth layer groups. Ursus. 1998;10:449–53.


    Google Scholar
     

  • Towns L, Derocher AE, Stirling I, Lunn NJ, Hedman D. Spatial and temporal patterns of problem polar bears in Churchill, Manitoba. Polar Biol. 2009;32:1529–37.

    Article 

    Google Scholar
     

  • Heemskerk S, Johnson AC, Hedman D, Trim V, Lunn NJ, McGeachy D, et al. Temporal dynamics of human-polar bear conflicts in Churchill, Manitoba. Glob Ecol Conserv. 2020;24:e01320.


    Google Scholar
     

  • Sikes RS. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J Mammal. 2016;97:663–88.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyd JD, Brightsmith DJ. Error properties of Argos satellite telemetry locations using least squares and Kalman filtering. PLoS ONE. 2013;8:e63051.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • R Core Team. R: A language and environment for statistical computing. Vienna, Austria.: R Foundation for Statistical Computing; 2021.

  • Freitas C, Lydersen C, Fedak MA, Kovacs KM. A simple new algorithm to filter marine mammal Argos locations. Mar Mamm Sci. 2008;24:315–25.

    Article 

    Google Scholar
     

  • Derocher AE, Wiig Ø, Bangjord G. Predation of Svalbard reindeer by polar bears. Polar Biol. 2000;23:675–8.

    Article 

    Google Scholar
     

  • Pagano AM, Carnahan AM, Robbins CT, Owen MA, Batson T, Wagner N, et al. Energetic costs of locomotion in bears: is plantigrade locomotion energetically economical? J Exp Biol. 2018;221:jeb175372.

    Article 
    PubMed 

    Google Scholar
     

  • Jonsen ID, Patterson TA, Costa DP, Doherty PD, Godley BJ, Grecian WJ, et al. A continuous-time state-space model for rapid quality control of Argos locations from animal-borne tags. Mov Ecol. 2020;8:1–13.

    Article 

    Google Scholar
     

  • Langrock R, King R, Matthiopoulos J, Thomas L, Fortin D, Morales JM. Flexible and practical modeling of animal telemetry data: hidden Markov models and extensions. Ecology. 2012;93:2336–42.

    Article 
    PubMed 

    Google Scholar
     

  • McClintock BT, Michelot T. momentuHMM: R package for generalized hidden Markov models of animal movement. Methods Ecol Evol. 2018;9:1518–30.

    Article 

    Google Scholar
     

  • Johnson DS, London JM, Lea M-A, Durban JW. Continuous-time correlated random walk model for animal telemetry data. Ecology. 2008;89:1208–15.

    Article 
    PubMed 

    Google Scholar
     

  • Johnson DS, London JM. crawl: an R package for fitting continuous-time correlated random walk models to animal movement data. R package version 2.3.0.2022. http://CRAN.Rproject.org/package=crawl.

  • McClintock BT. Incorporating telemetry error into hidden Markov models of animal movement using multiple imputation. J Agric Biol Environ Stat. 2017;22:249–69.

    Article 

    Google Scholar
     

  • Bacheler NM, Michelot T, Cheshire RT, Shertzer KW. Fine-scale movement patterns and behavioral states of gray triggerfish Balistes capriscus determined from acoustic telemetry and hidden Markov models. Fish Res. 2019;215:76–89.

    Article 

    Google Scholar
     

  • Conners MG, Michelot T, Heywood EI, Orben RA, Phillips RA, Vyssotski AL, et al. Hidden Markov models identify major movement modes in accelerometer and magnetometer data from four albatross species. Mov Ecol. 2021;9:1–16.

    Article 

    Google Scholar
     

  • Zucchini W, MacDonald IL, Langrock R. Hidden Markov models for time series. 2nd ed. Boca Raton: CRC; 2017.

    Book 

    Google Scholar
     

  • Burnham KP, Anderson DR. Model selection and multimodel inference. 2nd ed. New York: Springer; 2002.


    Google Scholar
     

  • Latour PB. Spatial relationships and behavior of polar bears (Ursus maritimus Phipps) concentrated on land during the ice-free season of Hudson Bay. Can J Zool. 1981;59:1763–74.

    Article 

    Google Scholar
     

  • Derocher AE, Stirling I. Observations of aggregating behaviour in adult male polar bears (Ursus maritimus). Can J Zool. 1990;68:1390–4.

    Article 

    Google Scholar
     

  • Lunn NJ. The ecological significance of supplemental food to polar bears on land during the ice-free period in western Hudson Bay. Master’s thesis, University of Alberta, Edmonton, Canada. 1985.

  • Bechshoft T, Luo Y, Bohart AM, Derocher AE, Richardson ES, Lunn NJ, et al. Monitoring spatially resolved trace elements in polar bear hair using single spot laser ablation ICP-MS. Ecol Indic. 2020;119:106822.

    Article 
    CAS 

    Google Scholar
     

  • St. Louis VL, Derocher AE, Stirling I, Graydon JA, Lee C, Jocksch E, et al. Differences in mercury bioaccumulation between polar bears (Ursus maritimus) from the Canadian high- and sub-Arctic. Environ Sci Technol. 2011;45:5922–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rogers MC, Peacock E, Simac K, O’Dell MB, Welker JM. Diet of female polar bears in the southern Beaufort Sea of Alaska: evidence for an emerging alternative foraging strategy in response to environmental change. Polar Biol. 2015;38:1035–47.

    Article 

    Google Scholar
     

  • Kaniuth K, Huber S. An assessment of radome effects on height estimates in the EUREF network. Mitt des Bundesamtes für Kartographie und Geodäsie. 2003;29:97–102.


    Google Scholar
     

  • Képeši V, Labun J. Radar signal attenuation due to finite radome thickness. NAŠE MORE: znanstveni časopis za more i pomorstvo. 2015;62:200–3.

    Article 

    Google Scholar
     

  • Jonkel CJ, Kolenosky GB, Robertson RJ, Russell RH. Further notes on polar bear denning habits. Bears Their Biol Manag. 1972;2:142–58.

    Article 

    Google Scholar
     

  • Knudsen B. Time budgets of polar bears (Ursus maritimus) on North Twin Island, James Bay, during summer. Can J Zool. 1978;56:1627–8.

    Article 

    Google Scholar
     

  • Lunn NJ, Stirling I. The significance of supplemental food to polar bears during the ice-free period of Hudson Bay. Can J Zool. 1985;63:2291–7.

    Article 

    Google Scholar
     

  • Whiteman JP, Harlow HJ, Durner GM, Anderson-Sprecher R, Albeke SE, Regehr EV, et al. Summer declines in activity and body temperature offer polar bears limited energy. Science. 2015;349:295–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stirling I, Spencer C, Andriashek D. Behavior and activity budgets of wild breeding polar bears (Ursus maritimus). Mar Mamm Sci. 2016;32(1):13–37.

    Article 

    Google Scholar
     

  • Pagano AM, Durner GM, Rode KD, Atwood TC, Atkinson SN, Peacock E, et al. High-energy, high-fat lifestyle challenges an Arctic apex predator, the polar bear. Science. 2018;359:568–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pilfold NW, Hedman D, Stirling I, Derocher AE, Lunn NJ, Richardson E. Mass loss rates of fasting polar bears. Physiol Biochem Zool. 2016;89:377–88.

    Article 
    PubMed 

    Google Scholar
     

  • Atkinson SN, Nelson RA, Ramsay MA. Changes in the body composition of fasting polar bears (Ursus maritimus): the effect of relative fatness on protein conservation. Physiol Zool. 1996;69:304–16.

    Article 
    CAS 

    Google Scholar
     

  • Pagano AM, Rode KD, Lunn NJ, McGeachy D, Atkinson SN, Farley SD, et al. Polar bear energetic and behavioral strategies on land with implications for surviving the ice-free period. Nat Commun. 2024;15:947.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cherry SG, Derocher AE, Thiemann GW, Lunn NJ. Migration phenology and seasonal fidelity of an Arctic marine predator in relation to sea ice dynamics. J Anim Ecol. 2013;82:912–21.

    Article 
    PubMed 

    Google Scholar
     

  • Yee M, Reimer J, Lunn NJ, Togunov RR, Pilfold NW, McCall AG, et al. Polar bear (Ursus maritimus) migration from maternal dens in western Hudson Bay. Arctic. 2017;70:319–27.

    Article 

    Google Scholar
     

  • Regehr EV, Laidre KL, Resit Akcakaya H, Amstrup SC, Atwood TC, Lunn NJ, et al. Conservation status of polar bears (Ursus maritimus) in relation to projected sea-ice declines. Biol Lett. 2016;12:20160556.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molnár PK, Derocher AE, Thiemann GW, Lewis MA. Predicting survival, reproduction and abundance of polar bears under climate change. Biol Conserv. 2010;143:1612–22.

    Article 

    Google Scholar
     

  • Molnár PK, Bitz CM, Holland MM, Kay JE, Penk SR, Amstrup SC. Fasting season length sets temporal limits for global polar bear persistence. Nat Clim Chang. 2020;10:732–8.

    Article 

    Google Scholar
     

  • Stirling I. Midsummer observations on the behavior of wild polar bears (Ursus maritimus). Can J Zool. 1974;52:1191–8.

    Article 

    Google Scholar
     

  • Stirling I, Latour PB. Comparative hunting abilities of polar bear cubs of different ages. Can J Zool. 1978;56:1768–72.

    Article 

    Google Scholar
     

  • Dyck MG. Characteristics of polar bears killed in defense of life and property in Nunavut, Canada, 1970–2000. Ursus. 2006;17:52–62.

    Article 

    Google Scholar
     

  • Wilder JM, Vongraven D, Atwood T, Hansen B, Jessen A, Kochnev A, et al. Polar bear attacks on humans: implications of a changing climate. Wildl Soc Bull. 2017;41:537–47.

    Article 

    Google Scholar
     

  • Durner GM, Douglas DC, Nielson RM, Amstrup SC, McDonald TL, Stirling I, et al. Predicting 21st-century polar bear habitat distribution from global climate models. Ecol Monogr. 2009;79:25–58.

    Article 

    Google Scholar
     



  • Source link