Scientific Papers

Understanding lactate in the development of Hepatitis B virus-related hepatocellular carcinoma | Infectious Agents and Cancer


  • Papa S, Choy PM, Bubici C. The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene. 2019;38(13):2223–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dimeloe S, Burgener A-V, Grählert J, Hess C. T-cell metabolism governing activation, proliferation and differentiation; a modular view. Immunology. 2017;150(1):35–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanchez EL, Lagunoff M. Viral activation of cellular metabolism. Virology. 2015;479–80:609–18.

  • Zhou HC, Xin-Yan Y, Yu WW, Liang XQ, Du XY, Liu ZC, et al. Lactic acid in macrophage polarization: the significant role in inflammation and cancer. Int Rev Immunol. 2022;41(1):4–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Certo M, Llibre A, Lee W, Mauro C. Understanding lactate sensing and signalling. Trends in endocrinology and metabolism. Trends Endocrinol Metab. 2022;33(10):722–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z-H, Peng W-B, Zhang P, Yang X-P, Zhou Q. Lactate in the tumour microenvironment: from immune modulation to therapy. EBioMedicine. 2021;73:103627.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sebestyén A, Dankó T, Sztankovics D, Moldvai D, Raffay R, Cervi C, et al. The role of metabolic ecosystem in cancer progression — metabolic plasticity and mTOR hyperactivity in tumor tissues. Cancer Metastasis Rev. 2021;40(4):989–1033.

    Article 
    PubMed 

    Google Scholar
     

  • Thaker SK, Ch’ng J, Christofk HR. Viral hijacking of cellular metabolism. BMC Biol. 2019;17(1):59.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu L, Chen X, Wang L, Chen S. Oncogenic virus-induced aerobic glycolysis and tumorigenesis. J Cancer. 2018;9(20):3699–706.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreno-Altamirano MMB, Kolstoe SE, Sánchez-García FJ. Virus Control of Cell metabolism for replication and evasion of host Immune responses. Front Cell Infect Microbiol. 2019;9:95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li TY, Yang Y, Zhou G, Tu ZK. Immune suppression in chronic hepatitis B infection associated liver disease: a review. World J Gastroenterol. 2019;25(27):3527–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kocianova E, Piatrikova V, Golias T. Revisiting the Warburg Effect with Focus on Lactate. Cancers. 2022;14(24):6028.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manoharan I, Prasad PD, Thangaraju M, Manicassamy S. Lactate-dependent regulation of Immune responses by dendritic cells and macrophages. Front Immunol. 2021;12:691134.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nolt B, Tu F, Wang X, Ha T, Winter R, Williams DL, et al. Lactate and Immunosuppression in Sepsis. Shock. 2018;49(2):120–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Wilpe S, Koornstra R, Den Brok M, De Groot JW, Blank C, De Vries J, et al. Lactate dehydrogenase: a marker of diminished antitumor immunity. Oncoimmunology. 2020;9(1):1731942.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kondo T, Koroki K, Kanzaki H, Kobayashi K, Kiyono S, Nakamura M, et al. Impact of acute decompensation on the prognosis of patients with hepatocellular carcinoma. PLoS ONE. 2022;17(1):e0261619.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faloppi L, Bianconi M, Memeo R, Casadei Gardini A, Giampieri R, Bittoni A, et al. Lactate Dehydrogenase in Hepatocellular Carcinoma: something Old, something New. Biomed Res Int. 2016;2016:7196280.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin J, Xu X, Pu R, Su H, Wang J, Liu W, et al. A Lower HCC incidence in chronic HBV-Infected patients recovered from Acute-on-chronic liver failure: a prospective cohort study. J Oncol. 2022;2022:5873002.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nie Y, Zhang Y, Liu LX, Zhu X. Serum lactate level predicts short-term and long-term mortality of HBV-ACLF patients: a prospective study. Ther Clin Risk Manag. 2020;16:849–60.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang S, Liu K, Yang L, Xu L, Lu X, Sun X, et al. Value of lactate level in predicting the short-term prognosis of patients with acute-on-chronic hepatitis B liver failure. J Clin Hepatol. 2022;38(7):1482.

    CAS 

    Google Scholar
     

  • Nie Y, Liu LX, Chen T, Zhang Y, Zhu X. Serum lactate level predicts 6-months mortality in patients with hepatitis B virus-related decompensated cirrhosis: a retrospective study. Epidemiol Infect. 2021;149:e26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao F, Huang XL, Cai MX, Lin MT, Wang BF, Wu W, et al. Prognostic value of serum lactate kinetics in critically ill patients with cirrhosis and acute-on-chronic liver failure: a multicenter study. Aging. 2019;11(13):4446–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shokri S, Mahmoudvand S, Taherkhani R, Farshadpour F, Jalalian FA. Complexity on modulation of NF-κB pathways by hepatitis B and C: a double-edged sword in hepatocarcinogenesis. J Cell Physiol. 2019;234:14734–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adam A, Fusheini A. Knowledge, risk of infection, and vaccination status of hepatitis B virus among rural high school students in Nanumba North and South districts of Ghana. PLoS ONE. 2020;15(4):e0231930.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen H, Wu Q, Peng L, Cao T, Deng M-L, Liu Y-W, et al. Mechanism, clinical significance, and Treatment Strategy of Warburg Effect in Hepatocellular Carcinoma. J Nanomaterials. 2021;2021:5164100.

    Article 

    Google Scholar
     

  • Diaz O, Vidalain PO, Ramière C, Lotteau V, Perrin-Cocon L. What role for cellular metabolism in the control of hepatitis viruses? Front Immunol. 2022;13:1033314.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yen C-J, Yang S-T, Chen R-Y, Huang W, Chayama K, Lee M-H, et al. Hepatitis B virus X protein (HBx) enhances centrosomal P4.1-associated protein (CPAP) expression to promote hepatocarcinogenesis. J Biomed Sci. 2019;26(1):44.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoo Y-G, Oh SH, Park ES, Cho H, Lee N, Park H, et al. Hepatitis B Virus X protein enhances transcriptional activity of Hypoxia-inducible Factor-1α through activation of Mitogen-activated protein kinase pathway. J Biol Chem. 2003;278(40):39076–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hosios AM, Manning BD. Cancer Signaling drives Cancer Metabolism: AKT and the Warburg Effect. Cancer Res. 2021;81(19):4896–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen L, Lin X, Lei Y, Xu X, Zhou Q, Chen Y, et al. Aerobic glycolysis enhances HBx-initiated hepatocellular carcinogenesis via NF-κBp65/HK2 signalling. J Exp Clin Cancer Res. 2022;41(1):329.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kracht M, Müller-Ladner U, Schmitz ML. Mutual regulation of metabolic processes and proinflammatory NF-κB signaling. J Allergy Clin Immunol. 2020;146(4):694–705.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Deng X, Liu Y, Liu Y, Sun L, Chen F. PKM2, function and expression and regulation. Cell Biosci. 2019;9(1):52.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Y-H, Yang Y, Chen C-H, Hsiao C-J, Li T-N, Liao K-J, et al. Aerobic glycolysis supports hepatitis B virus protein synthesis through interaction between viral surface antigen and pyruvate kinase isoform M2. PLoS Pathog. 2021;17(3):e1008866.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiu M, Zeng X, Shan R, Wen W, Li J, Wan R. The oncogenic role of HBXIP. Biomed Pharmacother. 2021;133:111045.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Yang Y, Huang Q, Deng Y, Guo F, Wang G, et al. Crosstalk between the tumor microenvironment and cancer cells: a promising predictive biomarker for immune checkpoint inhibitors. Front Cell Dev Biol. 2021;9:738373.

  • Caslin HL, Abebayehu D, Pinette JA, Ryan JJ. Lactate is a metabolic mediator that shapes immune cell fate and function. Front Physiol. 2021;12:688485.

  • Flores-Montoya G, Quintero D, Chatterjea D, Uttley H, Liphart C, Tian Z, et al. The C-C chemokine receptor 7: an immune molecule that modulates central nervous system function in homeostasis and disease. Brain Behav Immun Health. 2023;29:100610.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sangsuwan R, Thuamsang B, Pacifici N, Allen R, Han H, Miakicheva S, et al. Lactate exposure promotes immunosuppressive phenotypes in Innate Immune cells. Cell Mol Bioeng. 2020;13(5):541–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manoharan I, Prasad PD, Thangaraju M, Manicassamy S. Lactate-dependent regulation of immune responses by dendritic cells and macrophages. Front Immunol. 2021;12:691134.

  • Yonejima A, Mizukoshi E, Tamai T, Nakagawa H, Kitahara M, Yamashita T, et al. Characteristics of impaired dendritic cell function in patients with Hepatitis B Virus infection. Hepatology. 2019;70(1):25–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitahara M, Mizukoshi E, Nakamoto Y, Mukaida N, Matsushima K, Kaneko S. Efficient generation of highly immunocompetent dendritic cells from peripheral blood of patients with hepatitis C virus-related hepatocellular carcinoma. Int Immunopharmacol. 2014;21(2):346–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao L, Hong Z, Lei G, Guo AL, Wang FS, Jiao YM, et al. Decreased granzyme-B expression in CD11c(+)CD8(+) T cells associated with disease progression in patients with HBV-related hepatocellular carcinoma. Front Immunol. 2023;14:1107483.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun R, Li J, Lin X, Yang Y, Liu B, Lan T, et al. Peripheral immune characteristics of hepatitis B virus-related hepatocellular carcinoma. Front Immunol. 2023;14:1079495.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, et al. Macrophage polarization and its role in liver disease. Front Immunol. 2021;12:803037.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Lu S, Yang F, Guo Y, Chen Z, Yu N, et al. The role of macrophage polarization and associated mechanisms in regulating the anti-inflammatory action of acupuncture: a literature review and perspectives. Chin Med. 2021;16(1):56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y et al. Macrophage polarization and its role in Liver Disease. Front Immunol. 2021;12:803037.

  • Wang L-x, Zhang S-x, Wu H-j, Rong X-l, Guo J. M2b macrophage polarization and its roles in diseases. Leukoc Biol. 2019;106(2):345–58.

    Article 
    CAS 

    Google Scholar
     

  • Bility MT, Cheng L, Zhang Z, Luan Y, Li F, Chi L, et al. Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human-specific liver fibrosis and M2-like macrophages. PLoS Pathog. 2014;10(3):e1004032.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang H, Salavaggione O, Rivera L, Mukherjee S, Brekken R, Tennant B, et al. Woodchuck VEGF (wVEGF) characteristics: Model for angiogenesis and human hepatocellular carcinoma directed therapies. Arch Biochem Biophys. 2019;661:97–106.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Faure-Dupuy S, Delphin M, Aillot L, Dimier L, Lebossé F, Fresquet J, et al. Hepatitis B virus-induced modulation of liver macrophage function promotes hepatocyte infection. J Hepatol. 2019;71(6):1086–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mah AY, Cooper MA. Metabolic regulation of natural killer cell IFN-γ production. Crit Rev Immunol. 2016;36(2):131–47.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ivashkiv LB. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immunol. 2018;18(9):545–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pallmer K, Oxenius A. Recognition and Regulation of T cells by NK cells. Front Immunol. 2016;7:251.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee J-U, Kim L-K, Choi J-M. Revisiting the concept of targeting NFAT to control T cell immunity and autoimmune diseases. Front Immunol. 2018;9:2747.

  • Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, et al. LDHA-Associated Lactic Acid Production blunts Tumor Immunosurveillance by T and NK Cells. Cell Metabol. 2016;24(5):657–71.

    Article 
    CAS 

    Google Scholar
     

  • Terrén I, Orrantia A, Vitallé J, Zenarruzabeitia O, Borrego F. NK Cell Metabolism and Tumor Microenvironment. Front Immunol. 2019;10:2278.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harmon C, Robinson MW, Hand F, Almuaili D, Mentor K, Houlihan DD, et al. Lactate-mediated acidification of Tumor Microenvironment induces apoptosis of Liver-Resident NK cells in Colorectal Liver Metastasis. Cancer Immunol Res. 2019;7(2):335–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dodard G, Tata A, Erick TK, Jaime D, Miah SMS, Quatrini L, et al. Inflammation-Induced Lactate leads to Rapid loss of hepatic tissue-resident NK cells. Cell Rep. 2020;32(1):107855.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin X, Bi J. Prospects for NK-based immunotherapy of chronic HBV infection. Front Immunol. 2022;13:1084109.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Highton AJ, Schuster IS, Degli-Esposti MA, Altfeld M. The role of natural killer cells in liver inflammation. Semin Immunopathol. 2021;43(4):519–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi J, Zhao J, Zhang X, Cheng Y, Hu J, Li Y, et al. Activated hepatic stellate cells impair NK cell anti-fibrosis capacity through a TGF-β-dependent emperipolesis in HBV cirrhotic patients. Sci Rep. 2017;7(1):44544.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Li Y, Li F, Xu L. NK cell marker gene-based model shows good predictive ability in prognosis and response to immunotherapies in hepatocellular carcinoma. Sci Rep. 2023;13(1):7294.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalafati L, Hatzioannou A, Hajishengallis G, Chavakis T. The role of neutrophils in trained immunity. Immunol Rev. 2023;314(1):142–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song M, Graubard BI, Rabkin CS, Engels EA. Neutrophil-to-lymphocyte ratio and mortality in the United States general population. Sci Rep. 2021;11(1):464.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu R, Huang H, Zhang Z, Wang F-S. The role of neutrophils in the development of liver diseases. Cell Mol Immunol. 2014;11(3):224–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao Q, Zhao Y-J, Wang X-Y, Qiu S-J, Shi Y-H, Sun J, et al. CXCR6 Upregulation contributes to a Proinflammatory Tumor Microenvironment that drives metastasis and poor patient outcomes in Hepatocellular Carcinoma. Cancer Res. 2012;72(14):3546–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Le PH, Liang KH, Chang ML, Hsu CW, Chen YC, Lin CL, et al. Clinical predictors for neutrophil-to-lymphocyte ratio changes in patients with chronic Hepatitis B receiving Peginterferon Treatment. vivo. 2017;31(4):723–9.

    Article 
    CAS 

    Google Scholar
     

  • Gong J, Liang YL, Zhou W, Jie Y, Xiao C, Chong Y, et al. Prognostic value of neutrophil-to-lymphocyte ratio associated with prognosis in HBV-infected patients. J Med Virol. 2018;90(4):730–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Hu H, Tan S, Dong Q, Fan X, Wang Y, et al. The role of neutrophil extracellular traps in cancer progression, metastasis and therapy. Exp Hematol Oncol. 2022;11(1):99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khatib-Massalha E, Bhattacharya S, Massalha H, Biram A, Golan K, Kollet O, et al. Lactate released by inflammatory bone marrow neutrophils induces their mobilization via endothelial GPR81 signaling. Nat Commun. 2020;11(1):3547.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manosalva C, Quiroga J, Hidalgo AI, Alarcón P, Anseoleaga N, Hidalgo MA, et al. Role of Lactate in inflammatory processes: friend or foe. Front Immunol. 2022;12:808799.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guan X, Lu Y, Zhu H, Yu S, Zhao W, Chi X, et al. The crosstalk between Cancer cells and neutrophils enhances Hepatocellular Carcinoma Metastasis via Neutrophil Extracellular traps-Associated cathepsin G component: a potential therapeutic target. J Hepatocell Carcinoma. 2021;8:451–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhan X, Wu R, Kong XH, You Y, He K, Sun XY, et al. Elevated neutrophil extracellular traps by HBV-mediated S100A9-TLR4/RAGE-ROS cascade facilitate the growth and metastasis of hepatocellular carcinoma. Cancer Commun (Lond). 2023;43(2):225–45.

    Article 
    PubMed 

    Google Scholar
     

  • Rostamian H, Khakpoor-Koosheh M, Jafarzadeh L, Masoumi E, Fallah-Mehrjardi K, Tavassolifar MJ, et al. Restricting tumor lactic acid metabolism using dichloroacetate improves T cell functions. BMC Cancer. 2022;22(1):39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen A-N, Luo Y, Yang Y-H, Fu J-T, Geng X-M, Shi J-P et al. Lactylation, a novel metabolic reprogramming code: current status and prospects. Front Immunol. 2021;12:688910.

  • Ho P-C, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell. 2015;162(6):1217–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Worsley CM, Veale RB, Mayne ES. The acidic tumour microenvironment: manipulating the immune response to elicit escape. Hum Immunol. 2022;83(5):399–408.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou L, He R, Fang P, Li M, Yu H, Wang Q, et al. Hepatitis B virus rigs the cellular metabolome to avoid innate immune recognition. Nat Commun. 2021;12(1):98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu L, Barbi J, Pan F. The regulation of immune tolerance by FOXP3. Nat Rev Immunol. 2017;17(11):703–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Navas LE, Carnero A. NAD + metabolism, stemness, the immune response, and cancer. Sig Transduct Target Ther. 2021;6(1):2.

    Article 
    CAS 

    Google Scholar
     

  • Naik A, Decock J. Lactate Metabolism and Immune Modulation in breast Cancer: a focused review on Triple negative breast tumors. Front Oncol. 2020;10:598626.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia H, Wang W, Crespo J, Kryczek I, Li W, Wei S, et al. Suppression of FIP200 and autophagy by tumor-derived lactate promotes naïve T cell apoptosis and affects tumor immunity. Sci Immunol. 2017;2(17):eaan4631.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magalhaes I, Yogev O, Mattsson J, Schurich A. The Metabolic Profile of Tumor and virally infected cells shapes their Microenvironment counteracting T cell immunity. Front Immunol. 2019;10:2309.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Tian Z. HBV-Induced Immune Imbalance in the development of HCC. Front Immunol. 2019;10:2048.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terabe M, Berzofsky JA. The role of NKT cells in tumor immunity. Adv Cancer Res. 2008;101:277–348.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie D, Zhu S, Bai L. Lactic acid in tumor microenvironments causes dysfunction of NKT cells by interfering with mTOR signaling. Sci China Life Sci. 2016;59(12):1290–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Decara J, Rivera P, López-Gambero AJ, Serrano A, Pavón FJ, Baixeras E et al. Peroxisome proliferator-activated receptors: experimental targeting for the treatment of inflammatory bowel diseases. Front Pharmacol. 2020;11:730.

  • De Lellis L, Cimini A, Veschi S, Benedetti E, Amoroso R, Cama A, et al. The Anticancer potential of peroxisome proliferator-activated receptor antagonists. ChemMedChem. 2018;13(3):209–19.

    Article 
    PubMed 

    Google Scholar
     

  • Fu S, He K, Tian C, Sun H, Zhu C, Bai S, et al. Impaired lipid biosynthesis hinders anti-tumor efficacy of intratumoral iNKT cells. Nat Commun. 2020;11(1):438.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chalmin F, Bruchard M, Vegran F, Ghiringhelli F. Regulation of T cell antitumor immune response by tumor induced metabolic stress. Cell Stress. 2018;3(1):9–18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elkhal A, Rodriguez Cetina Biefer H, Heinbokel T, Uehara H, Quante M, Seyda M, et al. NAD + regulates Treg cell fate and promotes allograft survival via a systemic IL-10 production that is CD4 + CD25 + Foxp3 + T cells independent. Sci Rep. 2016;6(1):22325.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Navarro MN, Gómez de Las Heras MM, Mittelbrunn M. Nicotinamide adenine dinucleotide metabolism in the immune response, autoimmunity and inflammageing. Br J Pharmacol. 2022;179(9):1839–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin N, Yin W, Miller H, Byazrova MG, Herrada AA, Benlagha K, et al. The role of regulatory T cells and follicular T helper cells in HBV infection. Front Immunol. 2023;14:1169601.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang R, Lei Z, Wang X, Qi Q, He J, Liu D, et al. Hepatitis B envelope antigen increases Tregs by converting CD4 + CD25– T cells into CD4 + CD25 + Foxp3 + Tregs. Exp Ther Med. 2020;20(4):3679–86.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rehwinkel J, Gack MU. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol. 2020;20(9):537–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang W, Wang G, Xu ZG, Tu H, Hu F, Dai J, et al. Lactate is a natural suppressor of RLR Signaling by Targeting MAVS. Cell. 2019;178(1):176–e8915.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin C, Ou Q. Emerging role of mitochondria in response to HBV infection. J Clin Lab Anal. 2022;36(10):e24704.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You H, Ma L, Wang X, Zhang F, Han Y, Yao J, et al. The emerging role of DEAD/H-box helicases in hepatitis B virus infection. Front Cell Infect Microbiol. 2022;12:1062553.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venditti S, Verdone L, Reale A, Vetriani V, Caserta M, Zampieri M. Molecules of silence: effects of Meditation on Gene expression and epigenetics. Front Psychol. 2020;11:1767.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Q, Li X, Long M, Xie X, Liu Q. Integrated analysis of histone lysine lactylation (Kla)-specific genes suggests that NR6A1, OSBP2 and UNC119B are novel therapeutic targets for hepatocellular carcinoma. Sci Rep. 2023;13(1):18642.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao W, Yu H, Liu X, Wang T, Yao Y, Zhou Q, et al. Systematic identification of the lysine lactylation in the protozoan parasite Toxoplasma Gondii. Parasit Vectors. 2022;15(1):180.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shoraka S, Hosseinian SM, Hasibi A, Ghaemi A, Mohebbi SR. The role of hepatitis B virus genome variations in HBV-related HCC: effects on host signaling pathways. Front Microbiol. 2023;14:1213145.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Li S, Duan X, Yang C, Xu M, Chen L. Macrophage phenotypes and Hepatitis B Virus infection. J Clin Transl Hepatol. 2020;8(4):424–31.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi H, Zhang Y, Yang X, Li M, Hu H, Xiong J, et al. Hepatitis B Core Antigen impairs the polarization while promoting the production of inflammatory cytokines of M2 macrophages via the TLR2 pathway. Front Immunol. 2020;11:535.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574(7779):575–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahmoudvand S, Shokri S. Effect of Lactate on Epigenetic Regulation in the development of Hepatitis B Virus-related Hepatocellular Carcinoma. J Clin Transl Hepatol. 2022;10(5):786–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui B, Lin H, Yu J, Yu J, Hu Z. Autophagy and the Immune response. Adv Exp Med Biol. 2019;1206:595–634.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhai H, Wang T, Liu D, Pan L, Sun Y, Qiu HJ. Autophagy as a dual-faced host response to viral infections. Front Cell Infect Microbiol. 2023;13:1289170.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin Y, Zhao Z, Huang A, Lu M. Interplay between cellular autophagy and Hepatitis B virus replication: a systematic review. Cells. 2020;9(9):2101.

  • Wang J, Chen J, Liu Y, Zeng X, Wei M, Wu S, et al. Hepatitis B Virus induces autophagy to promote its replication by the Axis of Mir-192‐3p‐XIAP through NF kappa B Signaling. Hepatology. 2019;69(3):974–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brisson L, Bański P, Sboarina M, Dethier C, Danhier P, Fontenille MJ, et al. Lactate dehydrogenase B controls lysosome activity and autophagy in Cancer. Cancer Cell. 2016;30(3):418–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hashemi M, Nadafzadeh N, Imani MH, Rajabi R, Ziaolhagh S, Bayanzadeh SD, et al. Targeting and regulation of autophagy in hepatocellular carcinoma: revisiting the molecular interactions and mechanisms for new therapy approaches. Cell Communication Signaling: Cell Commun Signal. 2023;21(1):32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link