Scientific Papers

Establishment of an ovarian cancer exhausted CD8+T cells-related genes model by integrated analysis of scRNA-seq and bulk RNA-seq | European Journal of Medical Research


  • Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.

    Article 
    PubMed 

    Google Scholar
     

  • Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A, Siegel RL. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018;68(4):284–96.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colombo N, Sessa C, du Bois A, Ledermann J, McCluggage WG, McNeish I, Morice P, Pignata S, Ray-Coquard I, Vergote I, et al. ESMO-ESGO consensus conference recommendations on ovarian cancer: pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease†. Ann Oncol. 2019;30(5):672–705.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arora N, Talhouk A, McAlpine JN, Law MR, Hanley GE. Long-term mortality among women with epithelial ovarian cancer: a population-based study in British Columbia, Canada. BMC Cancer. 2018;18(1):1039.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fotopoulou C, Planchamp F, Aytulu T, Chiva L, Cina A, Ergönül Ö, Fagotti A, Haidopoulos D, Hasenburg A, Hughes C, et al. European Society of Gynaecological Oncology guidelines for the peri-operative management of advanced ovarian cancer patients undergoing debulking surgery. Int J Gynecol Cancer. 2021;31(9):1199–206.

    Article 
    PubMed 

    Google Scholar
     

  • Kim A, Ueda Y, Naka T, Enomoto T. Therapeutic strategies in epithelial ovarian cancer. J Exp Clin Cancer. 2012;31:1–8.

    CAS 

    Google Scholar
     

  • Miller RE, Leary A, Scott CL, Serra V, Lord CJ, Bowtell D, Chang DK, Garsed DW, Jonkers J, Ledermann JA, et al. ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer. Ann Oncol. 2020;31(12):1606–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reina-Campos M, Scharping NE, Goldrath AW. CD8(+) T cell metabolism in infection and cancer. Nat Rev Immunol. 2021;21(11):718–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McLane LM, Abdel-Hakeem MS, Wherry EJ. CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol. 2019;37:457–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dolina JS, Van Braeckel-Budimir N, Thomas GD, Salek-Ardakani S. CD8(+) T cell exhaustion in cancer. Front Immunol. 2021;12: 715234.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang B, Li X, Zhang W, Fan J, Zhou Y, Li W, Yin J, Yang X, Guo E, Li X, et al. Spatial heterogeneity of infiltrating T cells in high-grade serous ovarian cancer revealed by multi-omics analysis. Cell Rep Med. 2022;3(12): 100856.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng X, Wang X, Cheng X, Liu Z, Yin Y, Li X, Huang Z, Wang Z, Guo W, Ginhoux F, et al. Single-cell analyses implicate ascites in remodeling the ecosystems of primary and metastatic tumors in ovarian cancer. Nat Cancer. 2023;4(8):1138–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fei H, Han X, Wang Y, Li S. Novel immune-related gene signature for risk stratification and prognosis prediction in ovarian cancer. J Ovarian Res. 2023;16(1):205.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kan T, Zhang S, Zhou S, Zhang Y, Zhao Y, Gao Y, Zhang T, Gao F, Wang X, Zhao L, et al. Single-cell RNA-seq recognized the initiator of epithelial ovarian cancer recurrence. Oncogene. 2022;41(6):895–906.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clough E, Barrett T. The gene expression omnibus database. Methods Mol Biol. 2016;1418:93–110.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 2013;41(Database issue):D991-995.

    CAS 
    PubMed 

    Google Scholar
     

  • Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38(6):675–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han Y, Wang Y, Dong X, Sun D, Liu Z, Yue J, Wang H, Li T, Wang C. TISCH2: expanded datasets and new tools for single-cell transcriptome analyses of the tumor microenvironment. Nucleic Acids Res. 2023;51(D1):D1425-d1431.

    Article 
    PubMed 

    Google Scholar
     

  • Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573-3587.e3529.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Y, Yang S, Ma J, Chen Z, Song G, Rao D, Cheng Y, Huang S, Liu Y, Jiang S, et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 2022;12(1):134–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstråle M, Laurila E, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knijnenburg TA, Wang L, Zimmermann MT, Chambwe N, Gao GF, Cherniack AD, Fan H, Shen H, Way GP, Greene CS, et al. Genomic and molecular landscape of DNA damage repair deficiency across the cancer genome atlas. Cell Rep. 2018;23(1):239-254.e236.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu L, Deng C, Pang B, Zhang X, Liu W, Liao G, Yuan H, Cheng P, Li F, Long Z, et al. TIP: a web server for resolving tumor immunophenotype profiling. Cancer Res. 2018;78(23):6575–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geeleher P, Cox N, Huang RS. pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS ONE. 2014;9(9): e107468.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang L, Yu J, Li J, Li N, Liu J, Xiu L, Zeng J, Wang T, Wu L. Integration of scRNA-Seq and bulk RNA-Seq to analyse the heterogeneity of ovarian cancer immune cells and establish a molecular risk model. Front Oncol. 2021;11: 711020.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Yan H, Fu Y. Effects of autophagy-related genes on the prognosis and immune microenvironment of ovarian cancer. Biomed Res Int. 2022;2022:6609195.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Y, Zheng M, Wang S, Gao L, Gou R, Liu O, Dong H, Li X, Lin B. Identification of a five-gene signature of the RGS gene family with prognostic value in ovarian cancer. Genomics. 2021;113(4):2134–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang D, Lu W, Cui S, Mei H, Wu X, Zhuo Z. Establishment of an ovarian cancer omentum metastasis-related prognostic model by integrated analysis of scRNA-seq and bulk RNA-seq. J Ovarian Res. 2022;15(1):123.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Xu Z, Yan Y. Role of a pyroptosis-related lncRNA signature in risk stratification and immunotherapy of ovarian cancer. Front Med (Lausanne). 2021;8: 793515.

    Article 
    PubMed 

    Google Scholar
     

  • Sun X, Xu P, Zhang F, Sun T, Jiang H, Lu X, Zhang M, Li P. The cuproptosis-related gene signature serves as a potential prognostic predictor for ovarian cancer using bioinformatics analysis. Ann Transl Med. 2022;10(18):1021.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu L, Zhao J, Du X, Zhao Y, Zou C, Zhou H, Li W, Yan X. Construction and validation of a novel aging-related gene signature and prognostic nomogram for predicting the overall survival in ovarian cancer. Cancer Med. 2021;10(24):9097–114.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Wu Y, Wang S, Wu J, Wu X, Zheng Z. A risk model of gene signatures for predicting platinum response and survival in ovarian cancer. J Ovarian Res. 2022;15(1):39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bi J, Bi F, Pan X, Yang Q. Establishment of a novel glycolysis-related prognostic gene signature for ovarian cancer and its relationships with immune infiltration of the tumor microenvironment. J Transl Med. 2021;19(1):382.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Huang W, Chen D, Zhao Y, Sun F, Wang Z, Lou G. Identification of a recurrence gene signature for ovarian cancer prognosis by integrating single-cell RNA sequencing and bulk expression datasets. Front Genet. 2022;13: 823082.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai W-P, Sheng W. Identification of hypoxia-related prognostic signature for ovarian cancer based on Cox regression model. Eur J Gynaecolog Oncol. 2022;43(2):247–56.

    Article 

    Google Scholar
     

  • Yousefi M, Dehghani S, Nosrati R, Ghanei M, Salmaninejad A, Rajaie S, Hasanzadeh M, Pasdar A. Current insights into the metastasis of epithelial ovarian cancer—hopes and hurdles. Cell Oncol (Dordr). 2020;43(4):515–38.

    Article 
    PubMed 

    Google Scholar
     

  • Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl). 2022;135(5):584–90.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang N, Bevan MJ. CD8(+) T cells: foot soldiers of the immune system. Immunity. 2011;35(2):161–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Leun AM, Thommen DS, Schumacher TN. CD8(+) T cell states in human cancer: insights from single-cell analysis. Nat Rev Cancer. 2020;20(4):218–32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grebinoski S, Zhang Q, Cillo AR, Manne S, Xiao H, Brunazzi EA, Tabib T, Cardello C, Lian CG, Murphy GF, et al. Autoreactive CD8(+) T cells are restrained by an exhaustion-like program that is maintained by LAG3. Nat Immunol. 2022;23(6):868–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gumber D, Wang LD. Improving CAR-T immunotherapy: overcoming the challenges of T cell exhaustion. EBioMedicine. 2022;77: 103941.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Budimir N, Thomas GD, Dolina JS, Salek-Ardakani S. Reversing T-cell exhaustion in cancer: lessons learned from PD-1/PD-L1 immune checkpoint blockade. Cancer Immunol Res. 2022;10(2):146–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sears JD, Waldron KJ, Wei J, Chang CH. Targeting metabolism to reverse T-cell exhaustion in chronic viral infections. Immunology. 2021;162(2):135–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang S, Wang R, Xu N, Wei X, Yang Y, Lian Z, Cen B, Shen C, Li W, Wang J, et al. SULT2B1-CS-DOCK2 axis regulates effector T-cell exhaustion in HCC microenvironment. Hepatology. 2023;78:1064–78.

    Article 
    PubMed 

    Google Scholar
     

  • Philip M, Schietinger A. CD8(+) T cell differentiation and dysfunction in cancer. Nat Rev Immunol. 2022;22(4):209–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pritykin Y, van der Veeken J, Pine AR, Zhong Y, Sahin M, Mazutis L, Pe’er D, Rudensky AY, Leslie CS. A unified atlas of CD8 T cell dysfunctional states in cancer and infection. Mol Cell. 2021;81(11):2477-2493.e2410.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Jian J, Zhang Y, Wang L, Liu X, Chen Z. Construction of cancer- associated fibroblasts related risk signature based on single-cell RNA-seq and bulk RNA-seq data in bladder urothelial carcinoma. Front Oncol. 2023;13:1170893.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang Y, Rosborough BR, Chen J, Das S, Kitsios GD, McVerry BJ, Mallampalli RK, Lee JS, Ray A, Chen W et al. Single cell RNA sequencing identifies an early monocyte gene signature in acute respiratory distress syndrome. JCI Insight 2020; 5(13).

  • Yang C, Guo Y, Wu Z, Huang J, Xiang B. Comprehensive analysis of cuproptosis-related genes in prognosis and immune infiltration of hepatocellular carcinoma based on bulk and single-cell RNA sequencing data. Cancers (Basel). 2022;14(22):5713.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song P, Li W, Guo L, Ying J, Gao S, He J. Identification and validation of a novel signature based on NK cell marker genes to predict prognosis and immunotherapy response in lung adenocarcinoma by integrated analysis of single-cell and bulk RNA-sequencing. Front Immunol. 2022;13: 850745.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang F, Yu S, Wu P, Liu L, Wei D, Li S. Discovery and construction of prognostic model for clear cell renal cell carcinoma based on single-cell and bulk transcriptome analysis. Transl Androl Urol. 2021;10(9):3540–54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi M, Li A, Zhou L, Chu Q, Luo S, Wu K. Immune signature-based risk stratification and prediction of immune checkpoint inhibitor’s efficacy for lung adenocarcinoma. Cancer Immunol Immunother. 2021;70(6):1705–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Z, Ding M, Qiu P, Pan K, Guo Q. Natural killer cell-related prognostic risk model predicts prognosis and treatment outcomes in triple-negative breast cancer. Front Immunol. 2023;14:1200282.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaira K, Yamaguchi O, Kawasaki T, Hashimoto K, Miura Y, Shiono A, Mouri A, Imai H, Kobayashi K, Yasuda M, et al. Prognostic significance of tumor infiltrating lymphocytes on first-line pembrolizumab efficacy in advanced non-small cell lung cancer. Discov Oncol. 2023;14(1):6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Liang L, Dai W, Cai G, Xu Y, Li X, Li Q, Cai S. Prognostic impact of programed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor infiltrating lymphocytes in colorectal cancer. Mol Cancer. 2016;15(1):55.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beckers RK, Selinger CI, Vilain R, Madore J, Wilmott JS, Harvey K, Holliday A, Cooper CL, Robbins E, Gillett D, et al. Programmed death ligand 1 expression in triple-negative breast cancer is associated with tumour-infiltrating lymphocytes and improved outcome. Histopathology. 2016;69(1):25–34.

    Article 
    PubMed 

    Google Scholar
     

  • Zhu C, Xue J, Wang Y, Wang S, Zhang N, Wang Y, Zhang L, Yang X, Long J, Yang X, et al. Efficacy and safety of lenvatinib combined with PD-1/PD-L1 inhibitors plus Gemox chemotherapy in advanced biliary tract cancer. Front Immunol. 2023;14:1109292.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bae SB, Cho HD, Oh MH, Lee JH, Jang SH, Hong SA, Cho J, Kim SY, Han SW, Lee JE, et al. Expression of programmed death receptor ligand 1 with high tumor-infiltrating lymphocytes is associated with better prognosis in breast cancer. J Breast Cancer. 2016;19(3):242–51.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin X, Shang X, Manorek G, Howell SB. Regulation of the epithelial–mesenchymal transition by claudin-3 and claudin-4. PLoS ONE. 2013;8(6): e67496.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao Z, Xu X, McClane B, Zeng Q, Litkouhi B, Welch WR, Berkowitz RS, Mok SC, Garner EI. C terminus of Clostridium perfringens enterotoxin downregulates CLDN4 and sensitizes ovarian cancer cells to Taxol and Carboplatin. Clin Cancer Res. 2011;17(5):1065–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwon MJ, Kim SS, Choi YL, Jung HS, Balch C, Kim SH, Song YS, Marquez VE, Nephew KP, Shin YK. Derepression of CLDN3 and CLDN4 during ovarian tumorigenesis is associated with loss of repressive histone modifications. Carcinogenesis. 2010;31(6):974–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shang X, Lin X, Manorek G, Howell SB. Claudin-3 and claudin-4 regulate sensitivity to cisplatin by controlling expression of the copper and cisplatin influx transporter CTR1. Mol Pharmacol. 2013;83(1):85–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuang L, Li L. E74-like factor 3 suppresses microRNA-485-5p transcription to trigger growth and metastasis of ovarian cancer cells with the involvement of CLDN4/Wnt/β-catenin axis. Saudi J Biol Sci. 2021;28(8):4137–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rätze MAK, Koorman T, Sijnesael T, Bassey-Archibong B, van de Ven R, Enserink L, Visser D, Jaksani S, Viciano I, Bakker ERM, et al. Loss of E-cadherin leads to Id2-dependent inhibition of cell cycle progression in metastatic lobular breast cancer. Oncogene. 2022;41(21):2932–44.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu C, Wang B, Zhu Y, Zhang C, Ren L, Lei X, Xiang Z, Zhou Z, Huang H, Wang J, et al. ID2 inhibits innate antiviral immunity by blocking TBK1- and IKKε-induced activation of IRF3. Sci Signal. 2022;15(715):eabh0068.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jakubison BL, Sarkar T, Gudmundsson KO, Singh S, Sun L, Morris HM, Klarmann KD, Keller JR. ID2 and HIF-1α collaborate to protect quiescent hematopoietic stem cells from activation, differentiation, and exhaustion. J Clin Invest. 2022; 132(13).

  • Liu J, Wang H, Zheng M, Deng L, Zhang X, Lin B. p53 and ANXA4/NF-κB p50 complexes regulate cell proliferation, apoptosis and tumor progression in ovarian clear cell carcinoma. Int J Mol Med. 2020;46(6):2102–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toyama A, Suzuki A, Shimada T, Aoki C, Aoki Y, Umino Y, Nakamura Y, Aoki D, Sato TA. Proteomic characterization of ovarian cancers identifying annexin-A4, phosphoserine aminotransferase, cellular retinoic acid-binding protein 2, and serpin B5 as histology-specific biomarkers. Cancer Sci. 2012;103(4):747–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mogami T, Yokota N, Asai-Sato M, Yamada R, Koizume S, Sakuma Y, Yoshihara M, Nakamura Y, Takano Y, Hirahara F, et al. Annexin A4 is involved in proliferation, chemo-resistance and migration and invasion in ovarian clear cell adenocarcinoma cells. PLoS ONE. 2013;8(11): e80359.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsumoto T, Yokoi A, Hashimura M, Oguri Y, Akiya M, Saegusa M. TGF-β-mediated LEFTY/Akt/GSK-3β/Snail axis modulates epithelial-mesenchymal transition and cancer stem cell properties in ovarian clear cell carcinomas. Mol Carcinog. 2018;57(8):957–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akiya M, Yamazaki M, Matsumoto T, Kawashima Y, Oguri Y, Kajita S, Kijima D, Chiba R, Yokoi A, Takahashi H, et al. Identification of LEFTY as a molecular marker for ovarian clear cell carcinoma. Oncotarget. 2017;8(38):63646–64.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link