Scientific Papers

Application of 3D bioprinting technology apply to assessing Dangguiniantongtang (DGNT) decoctions in arthritis | Chinese Medicine


  • Shams S, Martinez JM, Dawson JRD, Flores J, Gabriel M, Garcia G, Guevara A, Murray K, Pacifici N, Vargas MV, Voelker T, Hell JF Ashouri. JW. The Therapeutic Landscape of Rheumatoid Arthritis: Current State and Future Directions. 1663–9812 (Print).

  • Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: a current perspective. Biochem Pharmacol. 2020;180: 114147.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen M, Fu W, Xu H, Liu CJ. Pathogenic mechanisms of glucocorticoid-induced osteoporosis. Cytokine Growth Factor Rev. 2023;70:54–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costello RE, Yimer BB, Roads P, Jani M, Dixon WG. Glucocorticoid use is associated with an increased risk of hypertension. Rheumatology (Oxford). 2021;60(1):132–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jensen C, Teng Y. Is It Time to Start Transitioning From 2D to 3D Cell Culture?. 2296–889X (Print).

  • Breslin S, O’Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today. 2013;18(5–6):240–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alhaque S, Themis M, Rashidi H. Three-dimensional cell culture: from evolution to revolution. Philos Trans R Soc Lond B Biol Sci. 2018;373:1750.

    Article 

    Google Scholar
     

  • Pickl M, Ries CH. Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab. Oncogene. 2009;28(3):461–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herreros-Pomares A, Zhou X, Calabuig-Fariñas S, Lee S-J, Torres S, Esworthy T, Hann SY, Jantus-Lewintre E, Camps C, Zhang LG. 3D printing novel in vitro cancer cell culture model systems for lung cancer stem cell study. Mater Sci Eng, C. 2021;122: 111914.

    Article 
    CAS 

    Google Scholar
     

  • Čiužas D, Krugly E, Petrikaitė V. Fibrous 3D printed poly(ɛ)caprolactone tissue engineering scaffold for in vitro cell models. Biochem Eng J. 2022;185: 108531.

    Article 

    Google Scholar
     

  • Jung SS, Son J, Yi SJ, Kim K, Park HS, Kang H-W, Kim HK. Development of Müller cell-based 3D biomimetic model using bioprinting technology. Biomed Mater. 2023;18(1): 015009.

    Article 
    CAS 

    Google Scholar
     

  • Yang GH, Kim W, Kim J, Kim G. A skeleton muscle model using GelMA-based cell-aligned bioink processed with an electric-field assisted 3D/4D bioprinting. Theranostics. 2021;11(1):48–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang J, Huang Z, Liang Y, Yuan W, Bian L, Duan L, Rong Z, Xiong J, Wang D, Xia J. 3D printed gelatin/hydroxyapatite scaffolds for stem cell chondrogenic differentiation and articular cartilage repair. Biomater Sci. 2021;9(7):2620–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gatenholm B, Lindahl C, Brittberg M, Simonsson S. Collagen 2A type b induction after 3d bioprinting chondrocytes in situ into osteoarthritic chondral tibial lesion. Cartilage. 2021;13(2_suppl):1755s–69s.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu G, Liang Z, Fan Z, Yu M, Pan Q, Nan Y, Zhang W, Wang L, Wang X, Hua Y, Zhou G, Ren W. Construction of 3D-Bioprinted cartilage-mimicking substitute based on photo-crosslinkable Wharton’s jelly bioinks for full-thickness articular cartilage defect repair. Materials Today Bio. 2023;21: 100695.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Peng L, Li L, Huang C, Shi K, Meng X, Wang P, Wu M, Li L, Cao H, Wu K, Zeng Q, Pan H, Lu WW, Qin L, Ruan C, Wang X. 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model. Biomaterials. 2021;279: 121216.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh YP, Moses JC, Bandyopadhyay A, Mandal BB. 3D Bioprinted silk-based in vitro osteochondral model for osteoarthritis therapeutics. Adv Healthc Mater. 2022;11(24): e2200209.

    Article 
    PubMed 

    Google Scholar
     

  • Gomes JM, Marques CF, Rodrigues LC, Silva TH, Silva SS, Reis RL. 3D bioactive ionic liquid-based architectures: an anti-inflammatory approach for early-stage osteoarthritis. Acta Biomater. 2024;173:298–313.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mei X, Tong J, Zhu W, Zhu Y. lncRNA-NR024118 overexpression reverses LPS-induced inflammatory injury and apoptosis via NF-κB/Nrf2 signaling in ATDC5 chondrocytes. Mol Med Rep. 2019;20(4):3867–73.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ying H, Wang Y, Gao Z, Zhang Q. Long non-coding RNA activated by transforming growth factor beta alleviates lipopolysaccharide-induced inflammatory injury via regulating microRNA-223 in ATDC5 cells. Int Immunopharmacol. 2019;69:313–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang R, Hao P, Yu G, Liu C, Yu C, Huang Y, Wang Y. Kaempferol protects chondrogenic ATDC5 cells against inflammatory injury triggered by lipopolysaccharide through down-regulating miR-146a. Int Immunopharmacol. 2019;69:373–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang XC, Zhao NJ, Guo C, Chen JT, Song JL, Gao L. Quercetin reversed lipopolysaccharide-induced inhibition of osteoblast differentiation through the mitogen-activated protein kinase pathway in MC3T3-E1 cells. Mol Med Rep. 2014;10(6):3320–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bourebaba L, Michalak I, Baouche M, Kucharczyk K, Fal AM, Marycz K. Cladophora glomerata enriched by biosorption with Mn(II) ions alleviates lipopolysaccharide-induced osteomyelitis-like model in MC3T3-E1, and 4B12 osteoclastogenesis. J Cell Mol Med. 2020;24(13):7282–300.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin F, Liao L, Zhu Y. MiR-467b alleviates lipopolysaccharide-induced inflammation through targeting STAT1 in chondrogenic ATDC5 cells. Int J Immunogenet. 2021;48(5):435–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Yu C, Zhang H. Lipopolysaccharides-mediated injury to chondrogenic ATDC5 cells can be relieved by Sinomenine via downregulating microRNA-192. Phytother Res PTR. 2019;33(7):1827–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li W, Zhang H, Chen J, Tan Y, Li A, Guo L. N-acetyl Cysteine inhibits cell proliferation and differentiation of Lpsinduced MC3T3-E1 cells via regulating inflammatory cytokines. Curr Pharm Biotechnol. 2023;24(3):450–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin W, Liu S, Dong M, Liu Q, Shi C, Bai H, Wang Q, Yang X, Niu W, Wang L. A new NLRP3 inflammasome inhibitor, dioscin, promotes osteogenesis. Small. 2020;16(1): e1905977.

    Article 
    PubMed 

    Google Scholar
     

  • Guo C, Yuan L, Wang JG, Wang F, Yang XK, Zhang FH, Song JL, Ma XY, Cheng Q, Song GH. Lipopolysaccharide (LPS) induces the apoptosis and inhibits osteoblast differentiation through JNK pathway in MC3T3-E1 cells. Inflammation. 2014;37(2):621–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu H, Hao W, Wang X, Su H. miR-23b targets Smad 3 and ameliorates the LPS-inhibited osteogenic differentiation in preosteoblast MC3T3-E1 cells. J Toxicol Sci. 2016;41(2):185–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He S, Zhang H, Lu Y, Zhang Z, Zhang X, Zhou N, Hu Z. Nampt promotes osteogenic differentiation and lipopolysaccharide-induced interleukin-6 secretion in osteoblastic MC3T3-E1 cells. Aging. 2021;13(4):5150–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, Wen J, Liu C, Guo D. KLF4 downregulates FGF21 to activate inflammatory injury and oxidative stress of LPS-induced ATDC5 cells via SIRT1/NF-κB/p53 signaling. Mol Med Rep. 2022;25:5.

    Article 

    Google Scholar
     

  • Chen W, Zheng H, Zhang X, Xu Y, Fu Z, Ji X, Wei C, An G, Tan M, Zhou M. Columbianetin alleviates lipopolysaccharides (LPS)-induced inflammation and apoptosis in chondrocyte through activation of autophagy by inhibiting serum and glucocorticoid-induced protein kinase 1 (SGK1) expression. Bioengineered. 2022;13(2):4051–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo C, Wang S-L, Xu S-T, Wang J-G, Song G-H. SP600125 reduces lipopolysaccharide-induced apoptosis and restores the early-stage differentiation of osteoblasts inhibited by LPS through the MAPK pathway in MC3T3-E1 cells. Int J Mol Med. 2015;35(5):1427–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen S, Wang Q, Wu C, Zhao X, Xu H, Shi Q, Liang Q. Efficacy and mechanism of action of Danggui Niantong decoction against acute gouty arthritis in a mouse model: an experimental study. Chinese General Practice. 2021;24(24):3116–21+3128.


    Google Scholar
     

  • Yao L, Wang S. Effect of Danggui Niantong Decoction on joint swelling and tissue inflammatory factors for rats with acute gouty arthritis. J Sichuan Tradit Chin Med. 2018;36(12):37–9.


    Google Scholar
     

  • Zeng W, Yan Y, Zhang F, Zhang C, Liang W. Chrysin promotes osteogenic differentiation via ERK/MAPK activation. Protein Cell. 2013;4(7):539–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou Z, Wang Z, Tao Y, Bai J, Yu B, Shen J, Sun H, Xiao L, Xu Y, Zhou J, Wang Z, Geng D. KLF2 regulates osteoblast differentiation by targeting of Runx2. Lab Invest. 2019;99(2):271–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jadlowiec J, Koch H, Zhang X, Campbell PG, Seyedain M, Sfeir C. Phosphophoryn regulates the gene expression and differentiation of NIH3T3, MC3T3-E1, and human mesenchymal stem cells via the integrin/MAPK signaling pathway. J Biol Chem. 2004;279(51):53323–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, Chen Z. Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda). 2017;32(4):266–77.

    CAS 
    PubMed 

    Google Scholar
     

  • Owida HA, Kuiper NL, Yang Y. Maintenance and acceleration of pericellular matrix formation within 3D cartilage cell culture models. Cartilage. 2021;13(2_suppl):847s–61s.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tevlek A, Aydin HM. Multi-layered in vitro 3D-bone model via combination of osteogenic cell sheets with electrospun membrane interlayer. J Biomater Appl. 2021;36(5):818–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esmaeili A, Hosseini S, Kamali A, Hosseinzadeh M, Shekari F, Baghaban Eslaminejad M. Co-aggregation of MSC/chondrocyte in a dynamic 3D culture elevates the therapeutic effect of secreted extracellular vesicles on osteoarthritis in a rat model. Sci Rep. 2022;12(1):19827.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolff A, Frank M, Staehlke S, Peters K. A comparative study on the adipogenic differentiation of mesenchymal stem/stromal cells in 2D and 3D culture. Cells. 2022;11:8.

    Article 

    Google Scholar
     

  • Sung T-C, Heish C-W, Lee HH-C, Hsu J-Y, Wang C-K, Wang J-H, Zhu Y-R, Jen S-H, Hsu S-T, Hirad AH, Alarfaj AA, Higuchi A. 3D culturing of human adipose-derived stem cells enhances their pluripotency and differentiation abilities. J Mater Sci Technol. 2021;63:9–17.

    Article 
    CAS 

    Google Scholar
     

  • Fang Y, Eglen RM. Three-dimensional cell cultures in drug discovery and development. SLAS Discov. 2017;22(5):456–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biju TS, Priya VV, Francis AP. Role of three-dimensional cell culture in therapeutics and diagnostics: an updated review. Drug Deliv Transl Res. 2023;13(9):2239–53.

    Article 
    PubMed 

    Google Scholar
     

  • Peck Y, Leom LT, Low PFP, Wang DA. Establishment of an in vitro three-dimensional model for cartilage damage in rheumatoid arthritis. J Tissue Eng Regen Med. 2018;12(1):e237–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosser J, Bachmann B, Jordan C, Ribitsch I, Haltmayer E, Gueltekin S, Junttila S, Galik B, Gyenesei A, Haddadi B, Harasek M, Egerbacher M, Ertl P, Jenner F. Microfluidic nutrient gradient-based three-dimensional chondrocyte culture-on-a-chip as an in vitro equine arthritis model. Mater Today Bio. 2019;4: 100023.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samavedi S, Diaz-Rodriguez P, Erndt-Marino JD, Hahn MS. A three-dimensional Chondrocyte-Macrophage coculture system to probe inflammation in experimental osteoarthritis. Tissue Eng Part A. 2017;23(3–4):101–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Davison N, Moroni L, Feng F, Crist J, Salter E, Bingham CO, Elisseeff J. Evaluating osteoarthritic chondrocytes through a novel 3-dimensional in vitro system for cartilage tissue engineering and regeneration. Cartilage. 2012;3(2):128–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin J, Sun A.R, Li J, Yuan T, Cheng W, Ke L, Chen J, Sun W, Mi S, Zhang P. A three-dimensional co-culture model for rheumatoid arthritis pannus tissue. 2296–4185 (Print).

  • Philippon EML, van Rooijen LJE, Khodadust F, van Hamburg JP, van der Laken CJ, Tas SW. A novel 3D spheroid model of rheumatoid arthritis synovial tissue incorporating fibroblasts, endothelial cells, and macrophages. Front Immunol. 2023;14:1188835.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu G, Wang Y, Zhang M, Zhang Q. Long non-coding RNA THRIL promotes LPS-induced inflammatory injury by down-regulating microRNA-125b in ATDC5 cells. Int Immunopharmacol. 2019;66:354–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sui C, Zhang L, Hu Y. MicroRNA-let-7a inhibition inhibits LPS-induced inflammatory injury of chondrocytes by targeting IL6R. Mol Med Rep. 2019;20(3):2633–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan L, Li M, Cao FY, Zeng ZW, Li XB, Ma C, Ru JT, Wu XJ. Astragalus polysaccharide ameliorates lipopolysaccharide-induced cell injury in ATDC5 cells via miR-92a/KLF4 mediation. Biomed Pharmacother. 2019;118: 109180.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luan L, Liang Z. Tanshinone IIA protects murine chondrogenic ATDC5 cells from lipopolysaccharide-induced inflammatory injury by down-regulating microRNA-203a. Biomed Pharmacother. 2018;103:628–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link