Scientific Papers

Excessive accumulation of epicardial adipose tissue promotes microvascular obstruction formation after myocardial ischemia/reperfusion through modulating macrophages polarization | Cardiovascular Diabetology


  • Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nat Rev Cardiol. 2022;19(9):593–606.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villasante Fricke AC, Iacobellis G. Epicardial adipose tissue: clinical biomarker of cardio-metabolic risk. Int J Mol Sci. 2019;20(23):5989.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christensen RH, von Scholten BJ, Hansen CS, Jensen MT, Vilsbøll T, Rossing P, Jørgensen PG. Epicardial adipose tissue predicts incident cardiovascular disease and mortality in patients with type 2 diabetes. Cardiovasc Diabetol. 2019;18(1):114.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Liu B, Li Y, Jing X, Deng S, Yan Y, She Q. Epicardial fat tissue in patients with diabetes mellitus: a systematic review and meta-analysis. Cardiovasc Diabetol. 2019;18(1):3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madonna R, Massaro M, Scoditti E, Pescetelli I, De Caterina R. The epicardial adipose tissue and the coronary arteries: dangerous liaisons. Cardiovasc Res. 2019;115(6):1013–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conceição G, Martins D, Miranda M, Leite-Moreira I, Vitorino AF, Falcão-Pires R. Unraveling the role of epicardial adipose tissue in coronary artery disease: partners in crime? Int J Mol Sci. 2020;21(22):8866.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zobel EH, Christensen RH, Winther SA, Hasbak P, Hansen CS, von Scholten BJ, Holmvang L, Kjaer A, Rossing P, Hansen TW. Relation of cardiac adipose tissue to coronary calcification and myocardial microvascular function in type 1 and type 2 diabetes. Cardiovasc Diabetol. 2020;19(1):16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaihov-Teper O, Ram E, Ballan N, Brzezinski RY, Naftali-Shani N, Masoud R, Ziv T, Lewis N, Schary Y, Levin-Kotler LP, et al. Extracellular vesicles from epicardial fat facilitate atrial fibrillation. Circulation. 2021;143(25):2475–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fisser C, Colling S, Debl K, Hetzenecker A, Sterz U, Hamer OW, Fellner C, Maier LS, Buchner S, Arzt M. The impact of epicardial adipose tissue in patients with acute myocardial infarction. Clin Res Cardiol. 2021;110(10):1637–46.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gohbara M, Iwahashi N, Akiyama E, Maejima N, Tsukahara K, Hibi K, Kosuge M, Ebina T, Umemura S, Kimura K. Association between epicardial adipose tissue volume and myocardial salvage in patients with a first ST-segment elevation myocardial infarction: an epicardial adipose tissue paradox. J Cardiol. 2016;68(5):399–405.

    Article 
    PubMed 

    Google Scholar
     

  • Bière L, Behaghel V, Mateus V, Assunção A Jr, Gräni C, Ouerghi K, Grall S, Willoteaux S, Prunier F, Kwong R, et al. Relation of quantity of subepicardial adipose tissue to Infarct size in patients with ST-elevation myocardial infarction. Am J Cardiol. 2017;119(12):1972–8.

    Article 
    PubMed 

    Google Scholar
     

  • Heusch G. Coronary microvascular obstruction: the new frontier in cardioprotection. Basic Res Cardiol. 2019;114(6):45.

    Article 
    PubMed 

    Google Scholar
     

  • McCartney PJ, Eteiba H, Maznyczka AM, McEntegart M, Greenwood JP, Muir DF, Chowdhary S, Gershlick AH, Appleby C, Cotton JM, et al. Effect of low-dose intracoronary alteplase during primary percutaneous coronary intervention on microvascular obstruction in patients with acute myocardial infarction: a Randomized Clinical Trial. JAMA. 2019;321(1):56–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Broch K, Anstensrud AK, Woxholt S, Sharma K, Tøllefsen IM, Bendz B, Aakhus S, Ueland T, Amundsen BH, Damås JK, et al. Randomized Trial of Interleukin-6 receptor inhibition in patients with acute ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2021;77(15):1845–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Waha S, Patel MR, Granger CB, Ohman EM, Maehara A, Eitel I, Ben-Yehuda O, Jenkins P, Thiele H, Stone GW. Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: an individual patient data pooled analysis from seven randomized trials. Eur Heart J. 2017;38(47):3502–10.

    Article 
    PubMed 

    Google Scholar
     

  • Ghobrial M, Bawamia B, Cartlidge T, Spyridopoulos I, Kunadian V, Zaman A, Egred M, McDiarmid A, Williams M, Farag M, et al. Microvascular obstruction in Acute myocardial infarction, a potential therapeutic target. J Clin Med. 2023;12(18):5934.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao J, Zhang Q, Cheng W, Dai Q, Wei Z, Guo M, Chen F, Qiao S, Hu J, Wang J, et al. Heart-gut microbiota communication determines the severity of cardiac injury after myocardial ischaemia/reperfusion. Cardiovasc Res. 2023;119(6):1390–402.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du Y, Ji Q, Cai L, Huang F, Lai Y, Liu Y, Yu J, Han B, Zhu E, Zhang J, et al. Association between omentin-1 expression in human epicardial adipose tissue and coronary atherosclerosis. Cardiovasc Diabetol. 2016;15:90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu L, Dalal R, Cao CD, Postoak JL, Yang G, Zhang Q, Wang Z, Lal H, Van Kaer L. IL-10-producing B cells are enriched in murine pericardial adipose tissues and ameliorate the outcome of acute myocardial infarction. Proc Natl Acad Sci U S A. 2019;116(43):21673–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji Q, Zhang J, Du Y, Zhu E, Wang Z, Que B, Miao H, Shi S, Qin X, Zhao Y, et al. Human epicardial adipose tissue-derived and circulating secreted frizzled-related protein 4 (SFRP4) levels are increased in patients with coronary artery disease. Cardiovasc Diabetol. 2017;16(1):133.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gruzdeva O, Uchasova E, Dyleva Y, Borodkina D, Akbasheva O, Belik E, Karetnikova V, Brel N, Kokov A, Kashtalap V, et al. Relationships between epicardial adipose tissue thickness and adipo-fibrokine indicator profiles post-myocardial infarction. Cardiovasc Diabetol. 2018;17(1):40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bekkers SC, Backes WH, Kim RJ, Snoep G, Gorgels AP, Passos VL, Waltenberger J, Crijns HJ, Schalla S. Detection and characteristics of microvascular obstruction in reperfused acute myocardial infarction using an optimized protocol for contrast-enhanced cardiovascular magnetic resonance imaging. Eur Radiol. 2009;19(12):2904–12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng ACT, Strudwick M, van der Geest RJ, Ng ACC, Gillinder L, Goo SY, Cowin G, Delgado V, Wang WYS, Bax JJ. Impact of epicardial adipose tissue, left ventricular myocardial fat content, and interstitial fibrosis on myocardial contractile function. Circ Cardiovasc Imaging. 2018;11(8):e007372.

    Article 
    PubMed 

    Google Scholar
     

  • Henningsson M, Brundin M, Scheffel T, Edin C, Viola F, Carlhäll CJ. Quantification of epicardial fat using 3D cine Dixon MRI. BMC Med Imaging. 2020;20(1):80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, Caforio ALP, Crea F, Goudevenos JA, Halvorsen S, et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119–77.

    Article 
    PubMed 

    Google Scholar
     

  • Li JW, Chen YD, Chen WR, You Q, Li B, Zhou H, Zhang Y, Han TW. Prognostic value of plasma DPP4 activity in ST-elevation myocardial infarction. Cardiovasc Diabetol. 2017;16(1):72.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarkar J, Nargis T, Tantia O, Ghosh S, Chakrabarti P. Increased plasma dipeptidyl Peptidase-4 (DPP4) activity is an obesity-independent parameter for glycemic deregulation in type 2 diabetes patients. Front Endocrinol (Lausanne). 2019;10:505.

    Article 
    PubMed 

    Google Scholar
     

  • Kramer CM, Barkhausen J, Bucciarelli-Ducci C, Flamm SD, Kim RJ, Nagel E. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson. 2020;22(1):17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang TD, Lee WJ, Shih FY, Huang CH, Chen WJ, Lee YT, Shih TT, Chen MF. Association of epicardial adipose tissue with coronary atherosclerosis is region-specific and independent of conventional risk factors and intra-abdominal adiposity. Atherosclerosis. 2010;213(1):279–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petrini M, Alì M, Cannaò PM, Zambelli D, Cozzi A, Codari M, Malavazos AE, Secchi F, Sardanelli F. Epicardial adipose tissue volume in patients with coronary artery disease or non-ischaemic dilated cardiomyopathy: evaluation with cardiac magnetic resonance imaging. Clin Radiol. 2019;74(1):81.e1-81.e7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reiner J, Thiery J, Held J, Berlin P, Skarbaliene J, Vollmar B, Jaster R, Eriksson PO, Lamprecht G, Witte M. The dual GLP-1 and GLP-2 receptor agonist dapiglutide promotes barrier function in murine short bowel. Ann N Y Acad Sci. 2022;1514(1):132–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim ER, Park JS, Kim JH, Oh JY, Oh IJ, Choi DH, Lee YS, Park IS, Kim S, Lee DH, et al. A GLP-1/GLP-2 receptor dual agonist to treat NASH: targeting the gut-liver axis and microbiome. Hepatology. 2022;75(6):1523–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruen R, Curley S, Kajani S, Lynch G, O’Reilly ME, Dillon ET, Brennan EP, Barry M, Sheehan S, McGillicuddy FC, et al. Liraglutide attenuates preestablished atherosclerosis in apolipoprotein E-deficient mice via regulation of immune cell phenotypes and proinflammatory mediators. J Pharmacol Exp Ther. 2019;370(3):447–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao J, Li X, Hu J, Chen F, Qiao S, Sun X, Gao L, Xie J, Xu B. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through mir-182-regulated macrophage polarization. Cardiovasc Res. 2019;115(7):1205–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Li L, Zhang Z, Zhang X, Zhu Y, Zhang C, Bi Y. Extracellular vesicles mediate the communication of adipose tissue with brain and promote cognitive impairment associated with insulin resistance. Cell Metab. 2022;34(9):1264–e12798.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang TD, Lee WJ, Shih FY, Huang CH, Chang YC, Chen WJ, Lee YT, Chen MF. Relations of epicardial adipose tissue measured by multidetector computed tomography to components of the metabolic syndrome are region-specific and independent of anthropometric indexes and intraabdominal visceral fat. J Clin Endocrinol Metab. 2009;94(2):662–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barchetta I, Cimini FA, Dule S, Cavallo MG. Dipeptidyl Peptidase 4 (DPP4) as a Novel Adipokine: role in metabolism and Fat Homeostasis. Biomedicines. 2022;10(9):2306.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kahles F, Rückbeil MV, Mertens RW, Foldenauer AC, Arrivas MC, Moellmann J, Lebherz C, Biener M, Giannitsis E, Katus HA, et al. Glucagon-like peptide 1 levels predict cardiovascular risk in patients with acute myocardial infarction. Eur Heart J. 2020;41(7):882–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kahles F, Mertens RW, Rueckbeil MV, Arrivas MC, Moellmann J, Lebherz C, Biener M, Giannitsis E, Katus HA, Marx N, et al. The gut hormone GLP-2 predicts cardiovascular risk in patients with acute myocardial infarction. Eur Heart J. 2020;41(Supplement_2):1592.

    Article 

    Google Scholar
     

  • Elbaz-Greener G, Bloch O, Kumets I, Blatt A, Rapoport MJ. Endogenous glucagon-like peptide-1 system response is impaired during ST-elevation myocardial infarction in type 2 diabetes patients. Diabetes Obes Metab. 2019;21(1):194–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dozio E, Vianello E, Malavazos AE, Tacchini L, Schmitz G, Iacobellis G, Corsi Romanelli MM. Epicardial adipose tissue GLP-1 receptor is associated with genes involved in fatty acid oxidation and white-to-brown fat differentiation: a target to modulate cardiovascular risk? Int J Cardiol. 2019;292:218–24.

    Article 
    PubMed 

    Google Scholar
     

  • Malavazos AE, Iacobellis G, Dozio E, Basilico S, Di Vincenzo A, Dubini C, Menicanti L, Vianello E, Meregalli C, Ruocco C, et al. Human epicardial adipose tissue expresses glucose-dependent insulinotropic polypeptide, glucagon, and glucagon-like peptide-1 receptors as potential targets of pleiotropic therapies. Eur J Prev Cardiol. 2023;30(8):680–93.

    Article 
    PubMed 

    Google Scholar
     

  • van Eyk HJ, Paiman EHM, Bizino MB, de Heer P, Geelhoed-Duijvestijn PH, Kharagjitsingh AV, Smit JWA, Lamb HJ, Rensen PCN, Jazet IM. A double-blind, placebo-controlled, randomised trial to assess the effect of liraglutide on ectopic fat accumulation in south Asian type 2 diabetes patients. Cardiovasc Diabetol. 2019;18(1):87.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Myasoedova VA, Parisi V, Moschetta D, Valerio V, Conte M, Massaiu I, Bozzi M, Celeste F, Leosco D, Iaccarino G, et al. Efficacy of cardiometabolic drugs in reduction of epicardial adipose tissue: a systematic review and meta-analysis. Cardiovasc Diabetol. 2023;22(1):23.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cosson E, Nguyen MT, Rezgani I, Berkane N, Pinto S, Bihan H, Tatulashvili S, Taher M, Sal M, Soussan M, et al. Epicardial adipose tissue volume and myocardial ischemia in asymptomatic people living with diabetes: a cross-sectional study. Cardiovasc Diabetol. 2021;20(1):224.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brandt V, Decker J, Schoepf UJ, Varga-Szemes A, Emrich T, Aquino G, Bayer RR 2nd, Carson L, Sullivan A, Ellis L, et al. Additive value of epicardial adipose tissue quantification to coronary CT angiography-derived plaque characterization and CT fractional flow reserve for the prediction of lesion-specific ischemia. Eur Radiol. 2022;32(6):4243–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carena MC, Badi I, Polkinghorne M, Akoumianakis I, Psarros C, Wahome E, Kotanidis CP, Akawi N, Antonopoulos AS, Chauhan J, et al. Role of human epicardial adipose tissue-derived miR-92a-3p in myocardial redox state. J Am Coll Cardiol. 2023;82(4):317–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao S, Sui X, Wang J, Zhang J, Pei Y, Guo L, Liang Z. Secretory products from epicardial adipose tissue induce adverse myocardial remodeling after myocardial infarction by promoting reactive oxygen species accumulation. Cell Death Dis. 2021;12(9):848.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamaguchi Y, Cavallero S, Patterson M, Shen H, Xu J, Kumar SR, Sucov HM. Adipogenesis and epicardial adipose tissue: a novel fate of the epicardium induced by mesenchymal transformation and PPARγ activation. Proc Natl Acad Sci U S A. 2015;112(7):2070–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García-Vega D, Sánchez-López D, Rodríguez-Carnero G, Villar-Taibo R, Viñuela JE, Lestegás-Soto A, Seoane-Blanco A, Moure-González M, Bravo SB, Fernández ÁL, et al. Semaglutide modulates prothrombotic and atherosclerotic mechanisms, associated with epicardial fat, neutrophils and endothelial cells network. Cardiovasc Diabetol. 2024;23(1):1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link