Scientific Papers

Heat stress affects mammary metabolism by influencing the plasma flow to the glands | Journal of Animal Science and Biotechnology


  • Shwartz G, Rhoads ML, VanBaale MJ, Rhoads RP, Baumgard LH. Effects of a supplemental yeast culture on heat-stressed lactating Holstein cows. J Dairy Sci. 2009;92:935–42. https://doi.org/10.3168/jds.2008-1496.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wheelock JB, Rhoads RP, VanBaale MJ, Sanders SR, Baumgard LH. Effects of heat stress on energetic metabolism in lactating Holstein cows. J Dairy Sci. 2010;93:644–55. https://doi.org/10.3168/jds.2009-2295.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rhoads ML, Rhoads RP, VanBaale MJ, Collier RJ, Sanders SR, Weber WJ, et al. Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. J Dairy Sci. 2009;92(5):1986–97. https://doi.org/10.3168/jds.2008-1641.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Capuco AV, Ellis SE, Hale SA, Long E, Erdman RA, Zhao X, et al. Lactation persistency: insights from mammary cell proliferation studies. J Anim Sci. 2003;81(Suppl 3):18–31. https://doi.org/10.2527/2003.81suppl_318x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao S, Orellana RM, Weng X, Marins TN, Dahl GE, Bernard JK. Symposium review: The influences of heat stress on bovine mammary gland function. J Dairy Sci. 2018;101:5642–54. https://doi.org/10.3168/jds.2017-13727.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Capuco AV, Choudhary RK. Symposium review: Determinants of milk production: Understanding population dynamics in the bovine mammary epithelium. J Dairy Sci. 2020;103:2928–40. https://doi.org/10.3168/jds.2019-17241.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Slimen IB, Najar T, Ghram A, Dabbebi H, Ben Mrad M, Abdrabbah M. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review Int J Hyperthermia. 2014;30:513–23. https://doi.org/10.3109/02656736.2014.971446.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farmer C, Trottier NL, Dourmad JY. Review: Current knowledge on mammary blood flow, mammary uptake of energetic precursors and their effects on sow milk yield. Can J Anim Sci. 2008;88:195–204. https://doi.org/10.4141/CJAS07074.

    Article 

    Google Scholar
     

  • Sano H, Ambo K, Tsuda T. Blood glucose kinetics in whole body and mammary gland of lactating goats exposed to heat. J Dairy Sci. 1985;68:2557–64. https://doi.org/10.3168/jds.S0022-0302(85)81137-1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lublin A, Wolfenson D. Lactation and pregnancy effects on blood flow to mammary and reproductive systems in heat-stressed rabbits. Comp Biochem Physiol A Physiol. 1996;115:277–85. https://doi.org/10.1016/s0300-9629(96)00060-6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng J, Cai J, Wang DM, Liu HY, Sun HZ, Liu JX. Heat stress affects dairy cow health status through blood oxygen availability. J Anim Sci Biotechnol. 2023;14:112. https://doi.org/10.1186/s40104-023-00915-3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richard MJ, Portal B, Meo J, Coudray C, Hadjian A, Favier A. Malondialdehyde kit evaluated for determining plasma and lipoprotein fractions that react with thiobarbituric acid. Clin Chem. 1992;38(5):704–9. https://doi.org/10.1093/clinchem/38.5.704.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239(1):70–6. https://doi.org/10.1006/abio.1996.0292.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mepham TB. Amino acid utilization by lactating mammary gland. J Dairy Sci. 1982;65:287–98. https://doi.org/10.3168/jds.S0022-0302(82)82191-7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cant JP, DePeters EJ, Baldwin RL. Mammary amino acid utilization in dairy cows fed fat and its relationship to milk protein depression. J Dairy Sci. 1993;76:762–74. https://doi.org/10.3168/jds.S0022-0302(93)77400-7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang B, Sun HZ, Xu NN, Zhu KJ, Liu JX. Amino acid utilization of lactating dairy cows when diets are changed from an alfalfa-based diet to cereal straw-based diets. Anim Feed Sci Technol. 2016;217:56–66. https://doi.org/10.1016/j.anifeedsci.2016.04.014.

    Article 
    CAS 

    Google Scholar
     

  • Cai J, Zhao FQ, Liu JX, Wang DM. Local mammary glucose supply regulates availability and intracellular metabolic pathways of glucose in the mammary gland of lactating dairy goats under malnutrition of energy. Front Physiol. 2018;9:1467. https://doi.org/10.3389/fphys.2018.01467.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balogh O, Szepes O, Kovacs K, Kulcsár-Huszenicza M, Reiczigel J, Alcazar J, et al. Interrelationships of growth hormone AluI polymorphism, insulin resistance, milk production and reproductive performance in Holstein-Friesian cows. Vet Med. 2008;53(11):604–16. https://doi.org/10.17221/1865-VETMED.

    Article 
    CAS 

    Google Scholar
     

  • Pacheco-Rios D, Mackenzie DDS, McNabb WC. Comparison of two variants of the Fick principle for estimation of mammary blood flow in dairy cows fed two levels of dry matter intake. Can J Anim Sci. 2001;81:57–63. https://doi.org/10.4141/A00-035.

    Article 
    CAS 

    Google Scholar
     

  • Chaiyabutr N. Control of mammary function during lactation in crossbred dairy cattle in the tropics. In: Chaiyabutr N, editor. Milk production – Advanced genetic traits, cellular mechanism, animal management and health. London: IntechOpen; 2012. Chapter 6. https://www.intechopen.com/chapters/39319.

  • Renaudeau D, Noblet J, Dourmad JY. Effect of ambient temperature on mammary gland metabolism in lactating sows. J Anim Sci. 2003;81:217–31. https://doi.org/10.2527/2003.811217x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choshniak I, McEwan-Jenkinson D, Blatchford DR, Peaker M. Blood flow and catecholamine concentration in bovine and caprine skin during thermal sweating. Comp Biochem Physiol C Comp Pharmacol. 1982;71(1):37–42. https://doi.org/10.1016/0306-4492(82)90007-7.

    Article 

    Google Scholar
     

  • Dahl GE, Tao S, Laporta J. Heat stress impacts immune status in cows across the life cycle. Front Vet Sci. 2020;7:116. https://doi.org/10.3389/fvets.2020.00116.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu ZZ, Luo L, Lu Y, Cai J, Liu JX, Wang DM. Role of hypoxia in regulating mammary apoptosis-mediated lactation persistency alteration in high-yielding dairy cows. Anim Nutriomics. 2024;1:e3, 1–11. https://doi.org/10.1017/anr.2024.5.

  • Deussen A, Ohanyan V, Jannasch A, Yin L, Chilian W. Mechanisms of metabolic coronary flow regulation. J Mol Cell Cardiol. 2012;52:794–801. https://doi.org/10.1016/j.yjmcc.2011.10.001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai J, Wang DM, Liu JX. Regulation of fluid flow through the mammary gland of dairy cows and its effect on milk production: a systematic review. J Sci Food Agric. 2018;98:1261–70. https://doi.org/10.1002/jsfa.8605.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morris SM. Recent advances in arginine metabolism: roles and regulation of the arginases. Br J Pharmacol. 2009;157:922–30. https://doi.org/10.1111/j.1476-5381.2009.00278.x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cieslar SRL, Madsen TG, Purdie NG, Trout DR, Osborne VR, Cant JP. Mammary blood flow and metabolic activity are linked by a feedback mechanism involving nitric oxide synthesis. J Dairy Sci. 2014;97:2090–100. https://doi.org/10.3168/jds.2013-6961.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trimm E, Red-Horse K. Vascular endothelial cell development and diversity. Nat Rev Cardiol. 2023;20:197–210. https://doi.org/10.1038/s41569-022-00770-1.

    Article 
    PubMed 

    Google Scholar
     

  • Madsen TG, Cieslar SRL, Trout DR, Nielsen MO, Cant JP. Inhibition of local blood flow control systems in the mammary glands of lactating cows affects uptakes of energy metabolites from blood. J Dairy Sci. 2015;98:3046–58. https://doi.org/10.3168/jds.2014-8200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Curtis RV, Kim JJM, Bajramaj DL, Doelman J, Osborne VR, Cant JP. Decline in mammary translational capacity during intravenous glucose infusion into lactating dairy cows. J Dairy Sci. 2014;97:430–8. https://doi.org/10.3168/jds.2013-7252.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Youngblood JP, VandenBrooks JM, Babarinde O, Donnay ME, Elliott DB, Fredette-Roman J, et al. Oxygen supply limits the chronic heat tolerance of locusts during the first instar only. J Insect Physiol. 2020;127: 104157. https://doi.org/10.1016/j.jinsphys.2020.104157.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Serano M, Pietrangelo L, Paolini C, Guarnier FA, Protasi F. Oxygen consumption and basal metabolic rate as markers of susceptibility to malignant hyperthermia and heat stroke. Cells. 2022;11:2468. https://doi.org/10.3390/cells11162468.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Venton BJ. Caffeine modulates spontaneous adenosine and oxygen changes during ischemia and reperfusion. ACS Chem Neurosci. 2019;10:1941–9. https://doi.org/10.1021/acschemneuro.8b00251.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao FQ. Biology of glucose transport in the mammary gland. J Mammary Gland Biol Neoplasia. 2014;19:3–17. https://doi.org/10.1007/s10911-013-9310-8.

    Article 
    PubMed 

    Google Scholar
     

  • Shao Y, Wellman TL, Lounsbury KM, Zhao FQ. Differential regulation of GLUT1 and GLUT8 expression by hypoxia in mammary epithelial cells. Am J Physiol Regul Integr Comp Physiol. 2014;307:R237–247. https://doi.org/10.1152/ajpregu.00093.2014.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sadovnikova A, Garcia SC, Hovey RC. A comparative review of the cell biology, biochemistry, and genetics of lactose synthesis. J Mammary Gland Biol Neoplasia. 2021;26:181–96. https://doi.org/10.1007/s10911-021-09490-7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guinard-Flament J, Delamaire E, Lemosquet S, Boutinaud M, David Y. Changes in mammary uptake and metabolic fate of glucose with once-daily milking and feed restriction in dairy cows. Reprod Nutr Dev. 2006;46:589–98. https://doi.org/10.1051/rnd:2006030.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao ST, Ma L, Zhou Z, Zhou ZK, Baumgard LH, Jiang D, et al. Heat stress negatively affects the transcriptome related to overall metabolism and milk protein synthesis in mammary tissue of midlactating dairy cows. Physiol Genomics. 2019;51:400–9. https://doi.org/10.1152/physiolgenomics.00039.2019.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abbas Z, Sammad A, Hu L, Fang H, Xu Q, Wang Y. Glucose metabolism and dynamics of facilitative glucose transporters (GLUTs) under the influence of heat stress in dairy cattle. Metabolites. 2020;10:312. https://doi.org/10.3390/metabo10080312.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galster AD, Clutter WE, Cryer PE, Collins JA, Bier DM. Epinephrine plasma thresholds for lipolytic effects in man: measurements of fatty acid transport with [l-13C]palmitic acid. J Clin Invest. 1981;67:1729–38. https://doi.org/10.1172/jci110211.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sammad A, Wang YJ, Umer S, Lirong H, Khan I, Khan A, et al. Nutritional physiology and biochemistry of dairy cattle under the influence of heat stress: consequences and opportunities. Animals. 2020;10:793. https://doi.org/10.3390/ani10050793.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Min L, Cheng JB, Shi BL, Yang HJ, Zheng N, Wang JQ. Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows. J Zhejiang Univ-Sci B (Biomed & Biotechnol). 2015;16:541–8. https://doi.org/10.1631/jzus.B1400341.

    Article 
    CAS 

    Google Scholar
     

  • Itoh F, Obara Y, Fuse H, Rose MT, Osaka I, Takahashi H. Effects of heat exposure on plasma insulin, glucagon and metabolites in response to nutrient injection in heifers. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1998;119:157–64. https://doi.org/10.1016/s0742-8413(97)00203-x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian H, Zheng N, Wang WL, Cheng JB, Li SL, Zhang Y, et al. Integrated metabolomics study of the milk of heat-stressed lactating dairy cows. Sci Rep. 2016;6:24208. https://doi.org/10.1038/srep24208.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiang SK, Chen SE, Chang LC. The role of HO-1 and its crosstalk with oxidative stress in cancer cell survival. Cells. 2021;10:2401. https://doi.org/10.3390/cells10092401.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang YR, Yang CX, Elsheikh NAH, Li CM, Yang FX, Wang GL, et al. HO-1 reduces heat stress-induced apoptosis in bovine granulosa cells by suppressing oxidative stress. Aging. 2019;11(15):5535–47. https://doi.org/10.18632/aging.102136.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link