Scientific Papers

Ginsenoside Rb1 reduces oxidative/carbonyl stress damage and dysfunction of RyR2 in the heart of streptozotocin-induced diabetic rats | BMC Cardiovascular Disorders


  • Salvatore T, Pafundi PC, Galiero R, Albanese G, Di Martino A, Caturano A, Vetrano E, Rinaldi L, Sasso FC. The diabetic cardiomyopathy: the contributing pathophysiological mechanisms. Front Med (Lausanne). 2021;8:695792.

    Article 
    PubMed 

    Google Scholar
     

  • Smith ML, Bull CJ, Holmes MV, Davey Smith G, Sanderson E, Anderson EL, Bell JA. Distinct metabolic features of genetic liability to type 2 diabetes and coronary artery disease: a reverse mendelian randomization study. EBioMedicine. 2023;90:104503.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Couturier A, Calissi C, Cracowski JL, Sigaudo-Roussel D, Khouri C, Roustit M. Mouse models of diabetes-related ulcers: a systematic review and network meta-analysis. EBioMedicine. 2023;98:104856.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang T, Li Y, He S, Huang N, Du M, Zhai Q, Pu K, Wu M, Yan C, Ma Z, Wang Q. Reprogramming astrocytic NDRG2/NF-κB/C3 signaling restores the diabetes-associated cognitive dysfunction. EBioMedicine. 2023;93:104653.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dewidar B, Mastrototaro L, Englisch C, Ress C, Granata C, Rohbeck E, Pesta D, Heilmann G, Wolkersdorfer M, Esposito I, Reina Do Fundo M, Zivehe F, Yavas A, Roden M. Alterations of hepatic energy metabolism in murine models of obesity, diabetes and fatty liver diseases. EBioMedicine. 2023;94:104714.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Chang J, Shi Q, Li X, Wang L, Zhao H. Cardiovascular protective effect of sodium-glucose cotransporter 2 inhibitors on patients with acute coronary syndrome and type 2 diabetes mellitus: a retrospective study. BMC Cardiovasc Disord. 2023;23(1):495.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Zhong W, Li X, Shen F, Ma X, Yang Q, Hong S, Sun Y, Diets. Gut microbiota and metabolites. Phenomics. 2023;3(3):268–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dubois-Deruy E, Peugnet V, Turkieh A, Pinet F. Oxidative stress in cardiovascular diseases. Antioxid (Basel). 2020;9:864.

    Article 
    CAS 

    Google Scholar
     

  • van der Pol A, van Gilst WH, Voors AA, van der Meer P. Treating oxidative stress in heart failure: past, present and future. Eur J Heart Fail. 2019;4:425–35.


    Google Scholar
     

  • Nikolaienko R, Bovo E, Zima AV. Redox dependent modifications of ryanodine receptor: basic mechanisms and implications in heart diseases. Front Physiol. 2018;9:1775.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian C-J, Zhen Z. Reactive carbonyl species: diabetic complication in the heart and lungs. Trends Endocrinol Metab. 2019;8:546–56.

    Article 

    Google Scholar
     

  • Singh A, Kukreti R, Saso L, Kukreti S. Mechanistic insight into oxidative stress-triggered signaling pathways and type 2 diabetes. Molecules. 2022;27(3):950.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moore CJ, Shao CH, Nagai R, Kutty S, Singh J, Bidasee KR. Malondialdehyde and 4-hydroxynonenal adducts are not formed on cardiac ryanodine receptor (RyR2) and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) in diabetes. Mol Cell Biochem. 2013;376(1–2):121–35.

  • Crudele L, Gadaleta RM, Cariello M, Moschetta A. Gut microbiota in the pathogenesis and therapeutic approaches of diabetes. EBioMedicine. 2023;97:104821.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian C, Shao CH, Moore CJ, Kutty S, Walseth T, DeSouza C, Bidasee KR. Gain of function of cardiac ryanodine receptor in a rat model of type 1 diabetes. Cardiovasc Res. 2011;2:300–9.

    Article 

    Google Scholar
     

  • Asghari P, Scriven DR, Ng M, Panwar P, Chou KC, van Petegem F, Moore ED. Cardiac ryanodine receptor distribution is dynamic and changed by auxiliary proteins and post-translational modification. Elife. 2020;9:e51602.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kushnir A, Shan J, Betzenhauser MJ, Reiken S, Marks AR. Role of CaMKIIδ phosphorylation of the cardiac ryanodine receptor in the force frequency relationship and heart failure. PNAS. 2010;22:10274–9.

    Article 

    Google Scholar
     

  • Tian C-J, Zhang JH, Liu J, Ma Z, Zhen Z. Ryanodine receptor and immune-related molecules in diabetic cardiomyopathy. ESC Heart Fail. 2021;8(4):2637–46.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shuey MM, Lee KM, Keaton J, Khankari NK, Breeyear JH, Walker VM, Miller DR, Heberer KR, Reaven PD, Clarke SL, Lee J, Lynch JA, Vujkovic M, Edwards TL. A genetically supported drug repurposing pipeline for diabetes treatment using electronic health records. EBioMedicine. 2023;94:104674.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X, Sun J, Wang J, Meng T, Yang J, Zhou Y. The role of ferroptosis in diabetic cardiovascular diseases and the intervention of active ingredients of traditional Chinese medicine. Front Pharmacol. 2023;14:1286718.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trotta MC, Herman H, Ciceu A, Mladin B, Rosu M, Lepre CC, Russo M, Bácskay I, Fenyvesi F, Marfella R, Hermenean A, Balta C, D’Amico M. Chrysin-based supramolecular cyclodextrin-calixarene drug delivery system: a novel approach for attenuating cardiac fibrosis in chronic diabetes. Front Pharmacol. 2023;14:1332212.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem. 1976;72:248–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai L, Gao J, Wei F, Zhao J, Wang D, Wei J. Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes. Front Pharmacol. 2018;9:423.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong C, Liu P, Wang H, Dong M, Li G, Li Y. Ginsenoside Rb1 attenuates diabetic retinopathy in streptozotocin-induced diabetic rats. Acta Cir Bras. 2019;34(2):e201900201.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan W, Huang Y, Zheng H, Li S, Li Z, Yuan L, Cheng X, He C, Sun J. Ginsenosides for the treatment of metabolic syndrome and cardiovascular diseases: pharmacology and mechanisms. Biomed Pharmacother. 2020;132:110915.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su H, Tian C-J, Wang Y, Shi J, Chen X, Zhen Z, Bai Y, Deng L, Feng C, Ma Z, Liu J. Ginsenoside Rb1 reduces oxidative/carbonyl stress damage and ameliorates inflammation in the lung of streptozotocin-induced diabetic rats. Pharm Biol. 2022;60(1):2229–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin L, Wang J, Zhao R, Zhang X, Mei Y. Ginsenoside-Rb1 improved diabetic cardiomyopathy through regulating calcium signaling by alleviating protein O-GlcNAcylation. J Agric Food Chem. 2019;51:14074–85.

    Article 

    Google Scholar
     

  • Zhou WJ, Li JL, Zhou QM, Cai FF, Chen XL, Lu YY, Zhao M, Su SB. Ginsenoside Rb1 pretreatment attenuates myocardial ischemia by reducing calcium/calmodulin-dependent protein kinase II-medicated calcium release. World J Tradit Chin Med. 2020;6:284–94.

    Article 
    CAS 

    Google Scholar
     

  • Alomar FA, Al-Rubaish A, Al-Muhanna F, Al-Ali AK, McMillan J, Singh J, Bidasee KR. Adeno-Associated viral transfer of Glyoxalase-1 blunts carbonyl and oxidative stresses in hearts of type 1 Diabetic rats. Antioxid (Basel). 2020;9(7):592.

    Article 
    CAS 

    Google Scholar
     

  • Shao CH, Tian C, Ouyang S, Moore CJ, Alomar F, Nemet I, D’Souza A, Nagai R, Kutty S, Rozanski GJ, Ramanadham S, Singh J, Bidasee KR. Carbonylation induces heterogeneity in cardiac ryanodine receptors (RyR2) function during diabetes. Mol Pharmacol. 2013;3:383–99.


    Google Scholar
     

  • Bidasee KR, Nallani K, Besch HR, Dincer UD. Streptozotocin induced diabetes increases disulfide bond formation on cardiac ryanodine receptor (RyR2). J Pharmacol Exp Ther. 2003;305:989–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma S, Li X, Dong L, Zhu J, Zhang H, Jia Y. Protective effect of Sheng-Mai Yin, a traditional Chinese preparation, against doxorubicin-induced cardiac toxicity in rats. BMC Complement Altern Med. 2016;16:61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bugger H, Schwarzer M, Chen D, Schrepper A, Amorim PA, Schoepe M, Nguyen TD, Mohr FW, Khalimonchuk O, Weimer BC, Doenst T. Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure. Cardiovasc Res. 2010;2:376–84.

    Article 

    Google Scholar
     

  • Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ. Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes. 2002;6:1938–48.

    Article 

    Google Scholar
     

  • Barouch LA, Gao D, Chen L, Miller KL, Xu W, Phan AC, Kittleson MM, Minhas KM, Berkowitz DE, Wei C, Hare JM. Cardiac myocyte apoptosis is associated with increased DNA damage and decreased survival in murine models of obesity. Circ Res. 2006;1:119–24.

    Article 

    Google Scholar
     

  • Tian J, Tang W, Xu M, Zhang C, Zhao P, Cao T, Shan X, Lu R, Guo W. Shengmai San alleviates diabetic cardiomyopathy through improvement of mitochondrial lipid metabolic disorder. Cell Physiol Biochem. 2018;5:1726–39.

    Article 

    Google Scholar
     

  • Ding K, Song C, Hu H, Yin K, Huang H, Tang H. The Role of NLRP3 inflammasome in diabetic cardiomyopathy and its therapeutic implications. Oxid Med Cell Longev. 2022;2022.

  • Luo B, Huang F, Liu Y, Liang Y, Wei Z, Ke H, Zeng Z, Huang W, He Y NLRP3 Inflammasome as a molecular marker in diabetic cardiomyopathy. Front Physiol. 2017;8:519.

  • Sharma A, Tate M, Mathew G, Vince JE, Ritchie RH, de Haan JB Oxidative stress and NLRP3-inflammasome activity as significant drivers of diabetic cardiovascular complications: therapeutic implications. Front Physiol. 2018;9:114.

  • D’Oria R, Schipani R, Leonardini A, Natalicchio A, Perrini S, Cignarelli A, Laviola L, Giorgino F The role of oxidative stress in cardiac disease: from physiological response to injury factor. Oxid Med Cell Longev. 2020;2020:5732956.

  • De Geest B, Mishra M. Role of oxidative stress in diabetic cardiomyopathy. Antioxidants(Basel). 2022;4:784.

  • Varun K, Zoltan K, Alba S, Manuel B, Elisabeth K, Dimitrios T, Jan B G, Maik B,Khurrum S, Berend I, Stephen H, Thomas F, Julia S, Peter N, Stefan K. Elevated markers of DNA damage and senescence are associated with the progression of albuminuria and restrictive lung disease in patients with type 2 diabetes. E Bio Medicine. 2023;90:104516.

  • Ferdinando G, and Brownlee M. Oxidative stress and diabetic complications.Circ Res. 2010;9:1058–1070.

  • Donoso P, Sanchez G, Bull R, Hidalgo C Modulation of cardiac ryanodine receptor activity by ROS and RNS. Front Biosci. 2011;2:553 – 67.

  • Shao CH, Wehrens XH, Wyatt TA, Parbhu S, Rozanski GJ, Patel KP, Bidasee KR. Exercise training during diabetes attenuates cardiac ryanodine receptor dysregulation. J Appl Physiol. 2009;106:1280–1292.

  • Nolla-Colomer C, Tarifa C, Llach A, Jimenez-Sabado V, Vallmitjana A, Casabella S, Colino H, Izquierdo P, Casellas S, Rodriguez-Font E, Cinca J, Chen SR W, Benitez R, Hove-Madsen L. Pathological phosphorylation of the ryanodine receptor at s2808 increases the number of individual clusters activated per calcium spark and the calcium released per cluster. Eur Heart J. 2020;Supplement 2: ehaa946.3689.

  • Fernandez-Miranda G, Romero-Garcia T, Barrera-Lechuga TP, Mercado-Morales M, and Rueda A. Impaired activity of ryanodine receptors contributes to calcium mishandling in cardiomyocytes of metabolic syndrome rats. Physiol. 2019;10:520.



  • Source link