Scientific Papers

Microvascular destabilization and intricated network of the cytokines in diabetic retinopathy: from the perspective of cellular and molecular components | Cell & Bioscience


  • Kohner EM, Patel V, Rassam SMB. Role of blood flow and impaired autoregulation in the pathogenesis of diabetic retinopathy. Diabetes. 1995;44:603–7. https://doi.org/10.2337/diab.44.6.603.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roy S, Ha J, Trudeau K, Beglova E. Vascular basement membrane thickening in diabetic retinopathy. Curr Eye Res. 2010;35:1045–56. https://doi.org/10.3109/02713683.2010.514659.

    Article 
    PubMed 

    Google Scholar
     

  • Roy S, Kim D. Retinal capillary basement membrane thickening: role in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res. 2021;82: 100903. https://doi.org/10.1016/j.preteyeres.2020.100903.

    Article 
    PubMed 

    Google Scholar
     

  • Shen J, San W, Zheng Y, et al. Different types of cell death in diabetic endothelial dysfunction. Biomed Pharmacother. 2023;168: 115802. https://doi.org/10.1016/j.biopha.2023.115802.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li W, Yanoff M, Liu X, Ye X. Retinal capillary pericyte apoptosis in early human diabetic retinopathy. Chin Med J. 1997;110:659–63.

    CAS 
    PubMed 

    Google Scholar
     

  • Enge M. Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J. 2002;21:4307–16. https://doi.org/10.1093/emboj/cdf418.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perais J, Agarwal R, Evans JR, et al. Prognostic factors for the development and progression of proliferative diabetic retinopathy in people with diabetic retinopathy. Cochrane Database Syst Rev. 2023. https://doi.org/10.1002/14651858.CD013775.pub2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med. 2012;366:1227–39. https://doi.org/10.1056/NEJMra1005073.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torres-Costa S, Alves Valente MC, Falcão-Reis F, Falcão M. Cytokines and growth factors as predictors of response to medical treatment in diabetic macular edema. J Pharmacol Exp Ther. 2020;373:445–52. https://doi.org/10.1124/jpet.119.262956.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chan-Ling T, Koina ME, McColm JR, et al. Role of CD44+ stem cells in mural cell formation in the human choroid: evidence of vascular instability due to limited pericyte ensheathment. Invest Ophthalmol Vis Sci. 2011;52:399–410. https://doi.org/10.1167/iovs.10-5403.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rudraraju M, Narayanan SP, Somanath PR. Regulation of blood-retinal barrier cell-junctions in diabetic retinopathy. Pharmacol Res. 2020;161: 105115. https://doi.org/10.1016/j.phrs.2020.105115.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klaassen I, Van Noorden CJF, Schlingemann RO. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retin Eye Res. 2013;34:19–48. https://doi.org/10.1016/j.preteyeres.2013.02.001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Leary F, Campbell M. The blood–retina barrier in health and disease. FEBS J. 2023;290:878–91. https://doi.org/10.1111/febs.16330.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bora K, Kushwah N, Maurya M, et al. Assessment of inner blood-retinal barrier: animal models and methods. Cells. 2023;12:2443. https://doi.org/10.3390/cells12202443.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zihni C, Mills C, Matter K, Balda MS. Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol. 2016;17:564–80. https://doi.org/10.1038/nrm.2016.80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Díaz-Coránguez M, Ramos C, Antonetti DA. The inner blood-retinal barrier: cellular basis and development. Vision Res. 2017;139:123–37. https://doi.org/10.1016/j.visres.2017.05.009.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sorrentino FS, Allkabes M, Salsini G, et al. The importance of glial cells in the homeostasis of the retinal microenvironment and their pivotal role in the course of diabetic retinopathy. Life Sci. 2016;162:54–9. https://doi.org/10.1016/j.lfs.2016.08.001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daruich A, Matet A, Moulin A, et al. Mechanisms of macular edema: beyond the surface. Prog Retin Eye Res. 2018;63:20–68. https://doi.org/10.1016/j.preteyeres.2017.10.006.

    Article 
    PubMed 

    Google Scholar
     

  • Kur J, Newman EA, Chan-Ling T. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res. 2012;31:377–406. https://doi.org/10.1016/j.preteyeres.2012.04.004.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karlstetter M, Scholz R, Rutar M, et al. Retinal microglia: just bystander or target for therapy? Prog Retin Eye Res. 2015;45:30–57. https://doi.org/10.1016/j.preteyeres.2014.11.004.

    Article 
    PubMed 

    Google Scholar
     

  • Laties AM. Central retinal artery innervation. Absence of adrenergic innervation to the intraocular branches. Arch Ophthalmol Chic Ill. 1967;77:405–9. https://doi.org/10.1001/archopht.1967.00980020407021.

    Article 
    CAS 

    Google Scholar
     

  • Németh J, Knézy K, Tapasztó B, et al. Different autoregulation response to dynamic exercise in ophthalmic and central retinal arteries: a color doppler study in healthy subjects. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2002;240:835–40. https://doi.org/10.1007/s00417-002-0552-1.

    Article 

    Google Scholar
     

  • Riva CE, Logean E, Falsini B. Visually evoked hemodynamical response and assessment of neurovascular coupling in the optic nerve and retina. Prog Retin Eye Res. 2005;24:183–215. https://doi.org/10.1016/j.preteyeres.2004.07.002.

    Article 
    PubMed 

    Google Scholar
     

  • Newman EA. Functional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2013;33:1685–95. https://doi.org/10.1038/jcbfm.2013.145.

    Article 
    CAS 

    Google Scholar
     

  • Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer. Pflüg Arch Eur J Physiol. 2000;440:653–66. https://doi.org/10.1007/s004240000307.

    Article 
    CAS 

    Google Scholar
     

  • Zeng Y, Adamson RH, Curry F-RE, Tarbell JM. Sphingosine-1-phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding. Am J Physiol-Heart Circ Physiol. 2014;306:H363–72. https://doi.org/10.1152/ajpheart.00687.2013.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nieuwdorp M, Van Haeften TW, Gouverneur MCLG, et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes. 2006;55:480–6. https://doi.org/10.2337/diabetes.55.02.06.db05-1103.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reitsma S, Slaaf DW, Vink H, et al. The endothelial glycocalyx: composition, functions, and visualization. Pflüg Arch Eur J Physiol. 2007;454:345–59. https://doi.org/10.1007/s00424-007-0212-8.

    Article 
    CAS 

    Google Scholar
     

  • Harris NR, Leskova W, Kaur G, et al. Blood flow distribution and the endothelial surface layer in the diabetic retina. Biorheology. 2019;56:181–9. https://doi.org/10.3233/BIR-180200.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Curry FE, Adamson RH. Endothelial glycocalyx: permeability barrier and mechanosensor. Ann Biomed Eng. 2012;40:828–39. https://doi.org/10.1007/s10439-011-0429-8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Becker BF, Chappell D, Jacob M. Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol. 2010;105:687–701. https://doi.org/10.1007/s00395-010-0118-z.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jacob M, Bruegger D, Rehm M, et al. The endothelial glycocalyx affords compatibility of starling’s principle and high cardiac interstitial albumin levels. Cardiovasc Res. 2007;73:575–86. https://doi.org/10.1016/j.cardiores.2006.11.021.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pillinger NL, Kam PCA. Endothelial glycocalyx: basic science and clinical implications. Anaesth Intensiv Care. 2017;45:295–307. https://doi.org/10.1177/0310057X1704500305.

    Article 
    CAS 

    Google Scholar
     

  • Lipowsky HH, Gao L, Lescanic A. Shedding of the endothelial glycocalyx in arterioles, capillaries, and venules and its effect on capillary hemodynamics during inflammation. Am J Physiol Heart Circ Physiol. 2011;301:H2235–45. https://doi.org/10.1152/ajpheart.00803.2011.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dogné S, Flamion B, Caron N. Endothelial glycocalyx as a shield against diabetic vascular complications: involvement of hyaluronan and hyaluronidases. Arterioscler Thromb Vasc Biol. 2018;38:1427–39. https://doi.org/10.1161/ATVBAHA.118.310839.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lieleg O, Baumgärtel RM, Bausch AR. Selective filtering of particles by the extracellular matrix: an electrostatic bandpass. Biophys J. 2009;97:1569–77. https://doi.org/10.1016/j.bpj.2009.07.009.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rehm M, Zahler S, Lötsch M, et al. Endothelial glycocalyx as an additional barrier determining extravasation of 6% hydroxyethyl starch or 5% albumin solutions in the coronary vascular bed. Anesthesiology. 2004;100:1211–23. https://doi.org/10.1097/00000542-200405000-00025.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Betteridge KB, Arkill KP, Neal CR, et al. Sialic acids regulate microvessel permeability, revealed by novel in vivo studies of endothelial glycocalyx structure and function. J Physiol. 2017;595:5015–35. https://doi.org/10.1113/JP274167.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaur G, Harris NR. Endothelial glycocalyx in retina, hyperglycemia, and diabetic retinopathy. Am J Physiol Cell Physiol. 2023;324:C1061–77. https://doi.org/10.1152/ajpcell.00188.2022.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leskova W, Pickett H, Eshaq RS, et al. Effect of diabetes and hyaluronidase on the retinal endothelial glycocalyx in mice. Exp Eye Res. 2019;179:125–31. https://doi.org/10.1016/j.exer.2018.11.012.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Broekhuizen LN, Lemkes BA, Mooij HL, et al. Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia. 2010;53:2646–55. https://doi.org/10.1007/s00125-010-1910-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Packham DK, Wolfe R, Reutens AT, et al. Sulodexide fails to demonstrate renoprotection in overt type 2 diabetic nephropathy. J Am Soc Nephrol. 2012;23:123–30. https://doi.org/10.1681/ASN.2011040378.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Machin DR, Sabouri M, Zheng X, Donato AJ. Therapeutic strategies targeting the endothelial glycocalyx. Curr Opin Clin Nutr Metab Care. 2023;26:543–50. https://doi.org/10.1097/MCO.0000000000000973.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhattacharjee PS, Huq TS, Potter V, et al. High-glucose-induced endothelial cell injury is inhibited by a peptide derived from human apolipoprotein E. PLoS ONE. 2012;7: e52152. https://doi.org/10.1371/journal.pone.0052152.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaur G, Song Y, Xia K, et al. Effect of high glucose on glycosaminoglycans in cultured retinal endothelial cells and rat retina. Glycobiology. 2022;32:720–34. https://doi.org/10.1093/glycob/cwac029.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumase F, Morizane Y, Mohri S, et al. Glycocalyx degradation in retinal and choroidal capillary endothelium in rats with diabetes and hypertension. Acta medica Okayama. 2010;64(5):277–83.

    PubMed 

    Google Scholar
     

  • Shafat I, Ilan N, Zoabi S, et al. Heparanase levels are elevated in the urine and plasma of type 2 diabetes patients and associate with blood glucose levels. PLoS ONE. 2011;6: e17312. https://doi.org/10.1371/journal.pone.0017312.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noda K, Ishida S, Inoue M, et al. Production and activation of matrix metalloproteinase-2 in proliferative diabetic retinopathy. Investig Opthalmology Vis Sci. 2003;44:2163. https://doi.org/10.1167/iovs.02-0662.

    Article 

    Google Scholar
     

  • Gui F, You Z, Fu S, et al. Endothelial dysfunction in diabetic retinopathy. Front Endocrinol. 2020;11:591. https://doi.org/10.3389/fendo.2020.00591.

    Article 

    Google Scholar
     

  • Wisniewska-Kruk J, Klaassen I, Vogels IMC, et al. Molecular analysis of blood–retinal barrier loss in the akimba mouse, a model of advanced diabetic retinopathy. Exp Eye Res. 2014;122:123–31. https://doi.org/10.1016/j.exer.2014.03.005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yurchenco PD, Amenta PS, Patton BL. Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol. 2004;22:521–38. https://doi.org/10.1016/j.matbio.2003.10.006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trost A, Lange S, Schroedl F, et al. Brain and retinal pericytes: origin, function and role. Front Cell Neurosci. 2016. https://doi.org/10.3389/fncel.2016.00020.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morris AWJ, Sharp MM, Albargothy NJ, et al. Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol. 2016;131:725–36. https://doi.org/10.1007/s00401-016-1555-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoddevik EH, Rao SB, Zahl S, et al. Organisation of extracellular matrix proteins laminin and agrin in pericapillary basal laminae in mouse brain. Brain Struct Funct. 2020;225:805–16. https://doi.org/10.1007/s00429-020-02036-3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jayadev R, Sherwood DR. Basement membranes. Curr Biol. 2017;27:R207–11. https://doi.org/10.1016/j.cub.2017.02.006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bianchi E, Ripandelli G, Taurone S, et al. Age and diabetes related changes of the retinal capillaries: an ultrastructural and immunohistochemical study. Int J Immunopathol Pharmacol. 2016;29:40–53. https://doi.org/10.1177/0394632015615592.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hägg E. Glomerular basement membrane thickening in rats with long-term alloxan diabetes: a quantitative electron microscopic study. Acta Pathol Microbiol Scand. 1974;82A:211–9. https://doi.org/10.1111/j.1699-0463.1974.tb03845.x.

    Article 

    Google Scholar
     

  • Siperstein MD, Unger RH, Madison LL. Studies of muscle capillary basement membranes in normal subjects, diabetic, and prediabetic patients. J Clin Invest. 1968;47:1973–99. https://doi.org/10.1172/JCI105886.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friederici HHR, Randolph Tucker W, Schwartz TB. Observations on small blood vessels of skin in the normal and in diabetic patients. Diabetes. 1966;15:233–50. https://doi.org/10.2337/diab.15.4.233.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toussaint D, Dustin P. Electron microscopy of normal and diabetic retinal capillaries. Arch Ophthalmol. 1963;70:96–108. https://doi.org/10.1001/archopht.1963.00960050098015.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang X, Scott HA, Monickaraj F, et al. Basement membrane stiffening promotes retinal endothelial activation associated with diabetes. FASEB J. 2016;30:601–11. https://doi.org/10.1096/fj.15-277962.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sternberg M, Andre J, Peyroux J. Inhibition of the alpha-glucosidase specific for collagen disaccharide units in diabetic rat kidney by in vivo glucose levels: possible contribution to basement membrane thickening. Diabetologia. 1983. https://doi.org/10.1007/BF00282715.

    Article 
    PubMed 

    Google Scholar
     

  • Beyer TA, Hutson NJ. Introduction: evidence for the role of the polyol pathway in the pathophysiology of diabetic complications. Metabolism. 1986;35:1–3. https://doi.org/10.1016/0026-0495(86)90178-2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991;40:405–12. https://doi.org/10.2337/diab.40.4.405.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klaassen I, Van Geest RJ, Kuiper EJ, et al. The role of CTGF in diabetic retinopathy. Exp Eye Res. 2015;133:37–48. https://doi.org/10.1016/j.exer.2014.10.016.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kugler EC, Greenwood J, MacDonald RB. The “neuro-glial-vascular” unit: the role of glia in neurovascular unit formation and dysfunction. Front Cell Dev Biol. 2021;9: 732820. https://doi.org/10.3389/fcell.2021.732820.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Qin W, Qin X, et al. Meta-analysis of the relationship between ocular and peripheral serum IL-17A and diabetic retinopathy. Front Endocrinol. 2024;15:1320632. https://doi.org/10.3389/fendo.2024.1320632.

    Article 

    Google Scholar
     

  • Niu Y, Zhang W, Shi J, et al. The relationship between circulating growth differentiation factor 15 levels and diabetic retinopathy in patients with type 2 diabetes. Front Endocrinol. 2021;12: 627395. https://doi.org/10.3389/fendo.2021.627395.

    Article 

    Google Scholar
     

  • Chen H, Zhang X, Liao N, et al. Decreased expression of glucagon-like peptide-1 receptor and Sodium-glucose co-transporter 2 in patients with proliferative diabetic retinopathy. Front Endocrinol. 2022;13:1020252. https://doi.org/10.3389/fendo.2022.1020252.

    Article 

    Google Scholar
     

  • Niu T, Shi X, Liu X, et al. Porous Se@SiO2 nanospheres alleviate diabetic retinopathy by inhibiting excess lipid peroxidation and inflammation. Mol Med. 2024;30:24. https://doi.org/10.1186/s10020-024-00785-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cong X, Kong W. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell Signal. 2020;66: 109485. https://doi.org/10.1016/j.cellsig.2019.109485.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiba H, Osanai M, Murata M, et al. Transmembrane proteins of tight junctions. Biochim Biophys Acta BBA Biomembr. 2008;1778:588–600. https://doi.org/10.1016/j.bbamem.2007.08.017.

    Article 
    CAS 

    Google Scholar
     

  • Furuse M. Molecular basis of the core structure of tight junctions. Cold Spring Harb Perspect Biol. 2010;2: a002907. https://doi.org/10.1101/cshperspect.a002907.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danesh-Meyer HV, Zhang J, Acosta ML, et al. Connexin43 in retinal injury and disease. Prog Retin Eye Res. 2016;51:41–68. https://doi.org/10.1016/j.preteyeres.2015.09.004.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roy S, Kim D, Lim R. Cell-cell communication in diabetic retinopathy. Vision Res. 2017;139:115–22. https://doi.org/10.1016/j.visres.2017.04.014.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the β-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol. 2006;8:1223–34. https://doi.org/10.1038/ncb1486.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Antonetti DA, Barber AJ, Hollinger LA, et al. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. J Biol Chem. 1999;274:23463–7. https://doi.org/10.1074/jbc.274.33.23463.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu X, Fliesler SJ, Zhao Y-Y, et al. Loss of caveolin-1 causes blood-retinal barrier breakdown, venous enlargement, and mural cell alteration. Am J Pathol. 2014;184:541–55. https://doi.org/10.1016/j.ajpath.2013.10.022.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tien T, Barrette KF, Chronopoulos A, Roy S. Effects of high glucose-induced Cx43 downregulation on occludin and ZO-1 expression and tight junction barrier function in retinal endothelial cells. Investig Opthalmology Vis Sci. 2013;54:6518. https://doi.org/10.1167/iovs.13-11763.

    Article 
    CAS 

    Google Scholar
     

  • Saker S, Stewart EA, Browning AC, et al. The effect of hyperglycaemia on permeability and the expression of junctional complex molecules in human retinal and choroidal endothelial cells. Exp Eye Res. 2014;121:161–7. https://doi.org/10.1016/j.exer.2014.02.016.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rangasamy S, Srinivasan R, Maestas J, et al. A potential role for angiopoietin 2 in the regulation of the blood-retinal barrier in diabetic retinopathy. Investig Opthalmology Vis Sci. 2011;52:3784. https://doi.org/10.1167/iovs.10-6386.

    Article 
    CAS 

    Google Scholar
     

  • Hofman P, Blaauwgeers HG, Tolentino MJ, et al. VEGF-A induced hyperpermeability of blood-retinal barrier endothelium in vivo is predominantly associated with pinocytotic vesicular transport and not with formation of fenestrations. Vascular endothelial growth factor-A. Curr Eye Res. 2000;21:637–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng Y, Venema VJ, Venema RC, et al. VEGF-induced permeability increase is mediated by caveolae. Invest Ophthalmol Vis Sci. 1999;40:157–67.

    CAS 
    PubMed 

    Google Scholar
     

  • Wisniewska-Kruk J, Van Der Wijk A-E, Van Veen HA, et al. Plasmalemma vesicle-associated protein has a key role in blood-retinal barrier loss. Am J Pathol. 2016;186:1044–54. https://doi.org/10.1016/j.ajpath.2015.11.019.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joussen AM, Doehmen S, Le ML, et al. TNF-alpha mediated apoptosis plays an important role in the development of early diabetic retinopathy and long-term histopathological alterations. Mol Vis. 2009;15:1418–28.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mizutani M, Kern TS, Lorenzi M. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J Clin Invest. 1996;97:2883–90. https://doi.org/10.1172/JCI118746.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Shabrawey M, Ahmad S, Megyerdi S, et al. Caspase-14: a novel caspase in the retina with a potential role in diabetic retinopathy. Mol Vis. 2012;18:1895–906.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin J, Chen M, Liu D, et al. Exogenous hydrogen sulfide protects human umbilical vein endothelial cells against high glucose-induced injury by inhibiting the necroptosis pathway. Int J Mol Med. 2018;41:1477–86. https://doi.org/10.3892/ijmm.2017.3330.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Qiu Q, Wang H, et al. TRIM46 contributes to high glucose-induced ferroptosis and cell growth inhibition in human retinal capillary endothelial cells by facilitating GPX4 ubiquitination. Exp Cell Res. 2021;407: 112800. https://doi.org/10.1016/j.yexcr.2021.112800.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Zhang Z, Yang J, et al. lncRNA ZFAS1 positively facilitates endothelial ferroptosis via miR-7-5p/ACSL4 axis in diabetic retinopathy. Oxid Med Cell Longev. 2022;2022:1–17. https://doi.org/10.1155/2022/9004738.

    Article 
    CAS 

    Google Scholar
     

  • Chen W, Zhao M, Zhao S, et al. Activation of the TXNIP/NLRP3 inflammasome pathway contributes to inflammation in diabetic retinopathy: a novel inhibitory effect of minocycline. Inflamm Res. 2017;66:157–66. https://doi.org/10.1007/s00011-016-1002-6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu C, Draga D, Zhou C, et al. miR-590-3p inhibits pyroptosis in diabetic retinopathy by targeting NLRP1 and inactivating the NOX4 signaling pathway. Investig Opthalmology Vis Sci. 2019;60:4215. https://doi.org/10.1167/iovs.19-27825.

    Article 
    CAS 

    Google Scholar
     

  • Wang Q, Zhao T, Zhang W, et al. Poly (ADP-ribose) polymerase 1 mediated arginase II activation is responsible for oxidized LDL-induced endothelial dysfunction. Front Pharmacol. 2018;9:882. https://doi.org/10.3389/fphar.2018.00882.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oshitari T. Neurovascular cell death and therapeutic strategies for diabetic retinopathy. Int J Mol Sci. 2023;24:12919. https://doi.org/10.3390/ijms241612919.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joussen AM, Poulaki V, Qin W, et al. Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo. Am J Pathol. 2002;160:501–9. https://doi.org/10.1016/S0002-9440(10)64869-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mondragon AA, Betts-Obregon BS, Moritz RJ, et al. BIGH3 protein and macrophages in retinal endothelial cell apoptosis. Apoptosis. 2015;20:29–37. https://doi.org/10.1007/s10495-014-1052-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie H, Zhang C, Liu D, et al. Erythropoietin protects the inner blood–retinal barrier by inhibiting microglia phagocytosis via Src/Akt/cofilin signalling in experimental diabetic retinopathy. Diabetologia. 2021;64:211–25. https://doi.org/10.1007/s00125-020-05299-x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang H. Pericyte-endothelial interactions in the retinal microvasculature. Int J Mol Sci. 2020;21:7413. https://doi.org/10.3390/ijms21197413.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darland DC, Massingham LJ, Smith SR, et al. Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev Biol. 2003;264:275–88. https://doi.org/10.1016/j.ydbio.2003.08.015.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benjamin LE, Hemo I, Keshet E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development. 1998;125:1591–8. https://doi.org/10.1242/dev.125.9.1591.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97:512–23. https://doi.org/10.1161/01.RES.0000182903.16652.d7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Z, Chopp M, Chen J. Multifaceted roles of pericytes in central nervous system homeostasis and disease. J Cereb Blood Flow Metab. 2020;40:1381–401. https://doi.org/10.1177/0271678X20911331.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci. 2016;19:771–83. https://doi.org/10.1038/nn.4288.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hori S, Ohtsuki S, Hosoya K, et al. A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J Neurochem. 2004;89:503–13. https://doi.org/10.1111/j.1471-4159.2004.02343.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang Q, Liu C, Li C-P, et al. Circular RNA-ZNF532 regulates diabetes-induced retinal pericyte degeneration and vascular dysfunction. J Clin Invest. 2020;130:3833–47. https://doi.org/10.1172/JCI123353.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu C, Ge H-M, Liu B-H, et al. Targeting pericyte–endothelial cell crosstalk by circular RNA-cPWWP2A inhibition aggravates diabetes-induced microvascular dysfunction. Proc Natl Acad Sci. 2019;116:7455–64. https://doi.org/10.1073/pnas.1814874116.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oku H, Kodama T, Sakagami K, Puro DG. Diabetes-induced disruption of gap junction pathways within the retinal microvasculature. Invest Ophthalmol Vis Sci. 2001;42:1915–20.

    CAS 
    PubMed 

    Google Scholar
     

  • Larson DM, Carson MP, Haudenschild CC. Junctional transfer of small molecules in cultured bovine brain microvascular endothelial cells and pericytes. Microvasc Res. 1987;34:184–99. https://doi.org/10.1016/0026-2862(87)90052-5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernandes R, Girão H, Pereira P. High glucose down-regulates intercellular communication in retinal endothelial cells by enhancing degradation of connexin 43 by a proteasome-dependent mechanism. J Biol Chem. 2004;279:27219–24. https://doi.org/10.1074/jbc.M400446200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li A-F, Roy S. High glucose-induced downregulation of connexin 43 expression promotes apoptosis in microvascular endothelial cells. Investig Opthalmology Vis Sci. 2009;50:1400. https://doi.org/10.1167/iovs.07-1519.

    Article 

    Google Scholar
     

  • Muto T, Tien T, Kim D, et al. High glucose alters Cx43 expression and gap junction intercellular communication in retinal müller cells: promotes müller cell and pericyte apoptosis. Investig Opthalmology Vis Sci. 2014;55:4327. https://doi.org/10.1167/iovs.14-14606.

    Article 
    CAS 

    Google Scholar
     

  • Warmke N, Griffin KJ, Cubbon RM. Pericytes in diabetes-associated vascular disease. J Diabet Complicat. 2016;30:1643–50. https://doi.org/10.1016/j.jdiacomp.2016.08.005.

    Article 

    Google Scholar
     

  • Robison WG, Kador PF, Kinoshita JH. Early retinal microangiopathy: prevention with aldose reductase inhibitors. Diabet Med. 1985;2:196–9. https://doi.org/10.1111/j.1464-5491.1985.tb00635.x.

    Article 
    PubMed 

    Google Scholar
     

  • Hughes S, Gardiner T, Hu P, et al. Altered pericyte–endothelial relations in the rat retina during aging: implications for vessel stability. Neurobiol Aging. 2006;27:1838–47. https://doi.org/10.1016/j.neurobiolaging.2005.10.021.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Figueiredo AM, Villacampa P, Diéguez-Hurtado R, et al. Phosphoinositide 3-kinase–regulated pericyte maturation governs vascular remodeling. Circulation. 2020;142:688–704. https://doi.org/10.1161/CIRCULATIONAHA.119.042354.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogura S, Kurata K, Hattori Y, et al. Sustained inflammation after pericyte depletion induces irreversible blood-retina barrier breakdown. JCI Insight. 2017. https://doi.org/10.1172/jci.insight.90905.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajendran S, Seetharaman S, Dharmarajan A, Kuppan K. Microvascular cells: a special focus on heterogeneity of pericytes in diabetes associated complications. Int J Biochem Cell Biol. 2021;134: 105971. https://doi.org/10.1016/j.biocel.2021.105971.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kowluru RA. Diabetic retinopathy: mitochondrial dysfunction and retinal capillary cell death. Antioxid Redox Signal. 2005;7:1581. https://doi.org/10.1089/ars.2005.7.1581.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beltramo E, Porta M. Pericyte loss in diabetic retinopathy: mechanisms and consequences. Curr Med Chem. 2013;20:3218–25. https://doi.org/10.2174/09298673113209990022.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen B, Jiang D, Tang L. Advanced glycation end-products induce apoptosis involving the signaling pathways of oxidative stress in bovine retinal pericytes. Life Sci. 2006;79:1040–8. https://doi.org/10.1016/j.lfs.2006.03.020.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang S-S, Hu J-Q, Liu X-H, et al. Role of moesin phosphorylation in retinal pericyte migration and detachment induced by advanced glycation endproducts. Front Endocrinol. 2020;11: 603450. https://doi.org/10.3389/fendo.2020.603450.

    Article 

    Google Scholar
     

  • Ejaz S, Chekarova I, Ejaz A, et al. Importance of pericytes and mechanisms of pericyte loss during diabetic retinopathy. Diabet Obes Metab. 2008;10:53–63. https://doi.org/10.1111/j.1463-1326.2007.00795.x.

    Article 
    CAS 

    Google Scholar
     

  • Joussen AM, Ricci F, Paris LP, et al. Angiopoietin/Tie2 signalling and its role in retinal and choroidal vascular diseases: a review of preclinical data. Eye. 2021;35:1305–16. https://doi.org/10.1038/s41433-020-01377-x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park SW, Yun J-H, Kim JH, et al. Angiopoietin 2 induces pericyte apoptosis via α3β1 integrin signaling in diabetic retinopathy. Diabetes. 2014;63:3057–68. https://doi.org/10.2337/db13-1942.

    Article 
    PubMed 

    Google Scholar
     

  • Cao R, Xue Y, Hedlund E-M, et al. VEGFR1–mediated pericyte ablation links VEGF and PlGF to cancer-associated retinopathy. Proc Natl Acad Sci. 2010;107:856–61. https://doi.org/10.1073/pnas.0911661107.

    Article 
    PubMed 

    Google Scholar
     

  • Greenberg JI, Shields DJ, Barillas SG, et al. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature. 2008;456:809–13. https://doi.org/10.1038/nature07424.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geraldes P, Hiraoka-Yamamoto J, Matsumoto M, et al. Activation of PKC-δ and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med. 2009;15:1298–306. https://doi.org/10.1038/nm.2052.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim YH, Kim YS, Park SY, et al. CaMKII regulates pericyte loss in the retina of early diabetic mouse. Mol Cell. 2011;31:289–93. https://doi.org/10.1007/s10059-011-0038-2.

    Article 
    CAS 

    Google Scholar
     

  • Betts-Obregon BS, Mondragon AA, Mendiola AS, et al. TGFβ induces BIGH3 expression and human retinal pericyte apoptosis: a novel pathway of diabetic retinopathy. Eye. 2016;30:1639–47. https://doi.org/10.1038/eye.2016.179.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang R, Liu H, Williams I, Chaqour B. Matrix metalloproteinase-2 expression and apoptogenic activity in retinal pericytes: implications in diabetic retinopathy. Ann N Y Acad Sci. 2007;1103:196–201. https://doi.org/10.1196/annals.1394.000.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sene A, Tadayoni R, Pannicke T, et al. Functional implication of Dp71 in osmoregulation and vascular permeability of the retina. PLoS ONE. 2009;4: e7329. https://doi.org/10.1371/journal.pone.0007329.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verkman AS, Ruiz-Ederra J, Levin MH. Functions of aquaporins in the eye. Prog Retin Eye Res. 2008;27:420–33. https://doi.org/10.1016/j.preteyeres.2008.04.001.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tretiach M, Madigan MC, Wen L, Gillies MC. Effect of müller cell co-culture on in vitro permeability of bovine retinal vascular endothelium in normoxic and hypoxic conditions. Neurosci Lett. 2005;378:160–5. https://doi.org/10.1016/j.neulet.2004.12.026.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barber AJ, Antonetti DA, Gardner TW. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The penn state retina research group. Invest Ophthalmol Vis Sci. 2000;41:3561–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Shen W, Li S, Chung SH, Gillies MC. Retinal vascular changes after glial disruption in rats. J Neurosci Res. 2010;88:1485–99. https://doi.org/10.1002/jnr.22317.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Byrne LC, Khalid F, Lee T, et al. AAV-mediated, optogenetic ablation of müller glia leads to structural and functional changes in the mouse retina. PLoS ONE. 2013;8: e76075. https://doi.org/10.1371/journal.pone.0076075.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Portillo J-AC, Lopez Corcino Y, Miao Y, et al. CD40 in retinal müller cells induces P2X7-dependent cytokine expression in macrophages/microglia in diabetic mice and development of early experimental diabetic retinopathy. Diabetes. 2017;66:483–93. https://doi.org/10.2337/db16-0051.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Portillo J-AC, Lopez Corcino Y, Dubyak GR, et al. Ligation of CD40 in human müller cells induces P2X 7 receptor-dependent death of retinal endothelial cells. Investig Opthalmology Vis Sci. 2016;57:6278. https://doi.org/10.1167/iovs.16-20301.

    Article 
    CAS 

    Google Scholar
     

  • Subauste CS. The CD40-ATP-P2X7 receptor pathway: cell to cell cross-talk to promote inflammation and programmed cell death of endothelial cells. Front Immunol. 2019;10:2958. https://doi.org/10.3389/fimmu.2019.02958.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schnitzer J. Astrocytes in the guinea pig, horse, and monkey retina: Their occurrence coincides with the presence of blood vessels. Glia. 1988;1:74–89. https://doi.org/10.1002/glia.440010109.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schnitzer J. Retinal astrocytes: their restriction to vascularized parts of the mammalian retina. Neurosci Lett. 1987;78:29–34. https://doi.org/10.1016/0304-3940(87)90556-8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Stone J. Role of astrocytes in the control of developing retinal vessels. Invest Ophthalmol Vis Sci. 1997;38:1653–66.

    CAS 
    PubMed 

    Google Scholar
     

  • Kaur C, Foulds W, Ling E. Blood–retinal barrier in hypoxic ischaemic conditions: Basic concepts, clinical features and management. Prog Retin Eye Res. 2008;27:622–47. https://doi.org/10.1016/j.preteyeres.2008.09.003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rungger-Brändle E, Dosso AA, Leuenberger PM. Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2000;41:1971–80.

    PubMed 

    Google Scholar
     

  • Gardner TW, Lieth E, Khin SA, et al. Astrocytes increase barrier properties and ZO-1 expression in retinal vascular endothelial cells. Invest Ophthalmol Vis Sci. 1997;38:2423–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Fresta CG, Fidilio A, Caruso G, et al. A new human blood-retinal barrier model based on endothelial cells, pericytes, and astrocytes. Int J Mol Sci. 2020;21:1636. https://doi.org/10.3390/ijms21051636.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wisniewska-Kruk J, Hoeben KA, Vogels IMC, et al. A novel co-culture model of the blood-retinal barrier based on primary retinal endothelial cells, pericytes and astrocytes. Exp Eye Res. 2012;96:181–90. https://doi.org/10.1016/j.exer.2011.12.003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rübsam A, Parikh S, Fort P. Role of inflammation in diabetic retinopathy. Int J Mol Sci. 2018;19:942. https://doi.org/10.3390/ijms19040942.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yun J-H, Park SW, Kim JH, et al. Angiopoietin 2 induces astrocyte apoptosis via αvβ5-integrin signaling in diabetic retinopathy. Cell Death Dis. 2016;7:e2101–e2101. https://doi.org/10.1038/cddis.2015.347.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mills SA, Jobling AI, Dixon MA, et al. Fractalkine-induced microglial vasoregulation occurs within the retina and is altered early in diabetic retinopathy. Proc Natl Acad Sci. 2021;118: e2112561118. https://doi.org/10.1073/pnas.2112561118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krady JK, Basu A, Allen CM, et al. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes. 2005;54:1559–65. https://doi.org/10.2337/diabetes.54.5.1559.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang M, Xie H, Zhang C, et al. Enhancing fractalkine/CX3CR1 signalling pathway can reduce neuroinflammation by attenuating microglia activation in experimental diabetic retinopathy. J Cell Mol Med. 2022;26:1229–44. https://doi.org/10.1111/jcmm.17179.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takeda A, Shinozaki Y, Kashiwagi K, et al. Microglia mediate non-cell-autonomous cell death of retinal ganglion cells. Glia. 2018;66:2366–84. https://doi.org/10.1002/glia.23475.

    Article 
    PubMed 

    Google Scholar
     

  • Yun J, Park SW, Kim K, et al. Endothelial STAT3 activation increases vascular leakage through downregulating tight junction proteins: implications for diabetic retinopathy. J Cell Physiol. 2017;232:1123–34. https://doi.org/10.1002/jcp.25575.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang L, Zhang C, Lu L, et al. Melatonin maintains inner blood-retinal barrier by regulating microglia via inhibition of PI3K/Akt/Stat3/NF-κB signaling pathways in experimental diabetic retinopathy. Front Immunol. 2022;13: 831660. https://doi.org/10.3389/fimmu.2022.831660.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campochiaro PA. Molecular pathogenesis of retinal and choroidal vascular diseases. Prog Retin Eye Res. 2015;49:67–81. https://doi.org/10.1016/j.preteyeres.2015.06.002.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campochiaro PA, Akhlaq A. Sustained suppression of VEGF for treatment of retinal/choroidal vascular diseases. Prog Retin Eye Res. 2021;83: 100921. https://doi.org/10.1016/j.preteyeres.2020.100921.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roy H, Bhardwaj S, Ylä-Herttuala S. Biology of vascular endothelial growth factors. FEBS Lett. 2006;580:2879–87. https://doi.org/10.1016/j.febslet.2006.03.087.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Bergen T, Etienne I, Cunningham F, et al. The role of placental growth factor (PlGF) and its receptor system in retinal vascular diseases. Prog Retin Eye Res. 2019;69:116–36. https://doi.org/10.1016/j.preteyeres.2018.10.006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uemura A, Fruttiger M, D’Amore PA, et al. VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog Retin Eye Res. 2021;84: 100954. https://doi.org/10.1016/j.preteyeres.2021.100954.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okabe K, Kobayashi S, Yamada T, et al. Neurons limit angiogenesis by titrating VEGF in retina. Cell. 2014;159:584–96. https://doi.org/10.1016/j.cell.2014.09.025.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176:1248–64. https://doi.org/10.1016/j.cell.2019.01.021.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mäkinen T, Veikkola T, Mustjoki S, et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 2001;20:4762–73. https://doi.org/10.1093/emboj/20.17.4762.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leppänen V-M, Tvorogov D, Kisko K, et al. Structural and mechanistic insights into VEGF receptor 3 ligand binding and activation. Proc Natl Acad Sci. 2013;110:12960–5. https://doi.org/10.1073/pnas.1301415110.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurihara T, Westenskow PD, Friedlander M, et al. Hypoxia-inducible factor (HIF)/vascular endothelial growth factor (VEGF) signaling in the retina. In: Ash JD, Grimm C, Hollyfield JG, et al., editors. Retinal degenerative diseases. New York: Springer; 2014. p. 275–81.

    Chapter 

    Google Scholar
     

  • Penn JS, Madan A, Caldwell RB, et al. Vascular endothelial growth factor in eye disease. Prog Retin Eye Res. 2008;27:331–71. https://doi.org/10.1016/j.preteyeres.2008.05.001.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behzadian MA, Windsor LJ, Ghaly N, et al. VEGF-induced paracellular permeability in cultured endothelial cells involves urokinase and its receptor. FASEB J. 2003;17:752–4. https://doi.org/10.1096/fj.02-0484fje.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Witmer A. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res. 2003;22:1–29. https://doi.org/10.1016/S1350-9462(02)00043-5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murakami T, Frey T, Lin C, Antonetti DA. Protein kinase cβ phosphorylates occludin regulating tight junction trafficking in vascular endothelial growth factor-induced permeability in vivo. Diabetes. 2012;61:1573–83. https://doi.org/10.2337/db11-1367.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harhaj NS, Felinski EA, Wolpert EB, et al. VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability. Invest Ophthalmol Vis Sci. 2006;47:5106–15. https://doi.org/10.1167/iovs.06-0322.

    Article 
    PubMed 

    Google Scholar
     

  • Scheppke L, Aguilar E, Gariano RF, et al. Retinal vascular permeability suppression by topical application of a novel VEGFR2/Src kinase inhibitor in mice and rabbits. J Clin Invest. 2008;118:2337–46. https://doi.org/10.1172/JCI33361.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee Y-J, Jung S-H, Kim S-H, et al. Essential role of transglutaminase 2 in vascular endothelial growth factor-induced vascular leakage in the retina of diabetic mice. Diabetes. 2016;65:2414–28. https://doi.org/10.2337/db15-1594.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klaassen I, Hughes JM, Vogels IMC, et al. Altered expression of genes related to blood–retina barrier disruption in streptozotocin-induced diabetes. Exp Eye Res. 2009;89:4–15. https://doi.org/10.1016/j.exer.2009.01.006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miyamoto K, Khosrof S, Bursell S-E, et al. Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability is mediated by intercellular adhesion molecule-1 (ICAM-1). Am J Pathol. 2000;156:1733–9. https://doi.org/10.1016/S0002-9440(10)65044-4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olofsson B, Pajusola K, Von Euler G, et al. Genomic organization of the mouse and human genes for vascular endothelial growth factor B (VEGF-B) and characterization of a second splice isoform. J Biol Chem. 1996;271:19310–7. https://doi.org/10.1074/jbc.271.32.19310.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimmond S, Lagercrantz J, Drinkwater C, et al. Cloning and characterization of a novel human gene related to vascular endothelial growth factor. Genome Res. 1996;6:124–31. https://doi.org/10.1101/gr.6.2.124.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoon Y, Losordo DW. All in the family: VEGF-B joins the ranks of proangiogenic cytokines. Circ Res. 2003;93:87–90. https://doi.org/10.1161/01.RES.0000084992.10766.36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silvestre J-S, Tamarat R, Ebrahimian TG, et al. Vascular endothelial growth factor-B promotes in vivo angiogenesis. Circ Res. 2003;93:114–23. https://doi.org/10.1161/01.RES.0000081594.21764.44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mould AW, Greco SA, Cahill MM, et al. Transgenic overexpression of vascular endothelial growth factor-b isoforms by endothelial cells potentiates postnatal vessel growth in vivo and in vitro. Circ Res. 2005. https://doi.org/10.1161/01.RES.0000182631.33638.77.

    Article 
    PubMed 

    Google Scholar
     

  • Aase K, Von Euler G, Li X, et al. Vascular endothelial growth factor-b–deficient mice display an atrial conduction defect. Circulation. 2001;104:358–64. https://doi.org/10.1161/01.CIR.104.3.358.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reichelt M, Shi S, Hayes M, et al. Vascular endothelial growth factor-B and retinal vascular development in the mouse. Clin Exp Ophthalmol. 2003;31:61–5. https://doi.org/10.1046/j.1442-9071.2003.00602.x.

    Article 
    PubMed 

    Google Scholar
     

  • Malik AK, Baldwin ME, Peale F, et al. Redundant roles of VEGF-B and PlGF during selective VEGF-A blockade in mice. Blood. 2006;107:550–7. https://doi.org/10.1182/blood-2005-05-2047.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong X, Huang H, Shen J, et al. Vascular endothelial growth factor-B gene transfer exacerbates retinal and choroidal neovascularization and vasopermeability without promoting inflammation. Mol Vis. 2011;17:492–507.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang F, Tang Z, Hou X, et al. VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis. Proc Natl Acad Sci. 2009;106:6152–7. https://doi.org/10.1073/pnas.0813061106.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen R, Lee C, Lin X, et al. Novel function of VEGF-B as an antioxidant and therapeutic implications. Pharmacol Res. 2019;143:33–9. https://doi.org/10.1016/j.phrs.2019.03.002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kinoshita S, Noda K, Saito W, et al. Vitreous levels of vascular endothelial growth factor-B in proliferative diabetic retinopathy. Acta Ophthalmol. 2016. https://doi.org/10.1111/aos.12969.

    Article 
    PubMed 

    Google Scholar
     

  • Mesquita J, Castro De Sousa J, Vaz-Pereira S, et al. VEGF-B levels in the vitreous of diabetic and non-diabetic patients with ocular diseases and its correlation with structural parameters. Med Sci. 2017;5:17. https://doi.org/10.3390/medsci5030017.

    Article 
    CAS 

    Google Scholar
     

  • Mesquita J, Castro-de-Sousa JP, Vaz-Pereira S, et al. Evaluation of the growth factors VEGF-a and VEGF-B in the vitreous and serum of patients with macular and retinal vascular diseases. Growth Fact. 2018;36:48–57. https://doi.org/10.1080/08977194.2018.1477140.

    Article 
    CAS 

    Google Scholar
     

  • Kovacs K, Marra KV, Yu G, et al. Angiogenic and inflammatory vitreous biomarkers associated with increasing levels of retinal ischemia. Investig Opthalmology Vis Sci. 2015;56:6523. https://doi.org/10.1167/iovs.15-16793.

    Article 
    CAS 

    Google Scholar
     

  • Ando R, Noda K, Namba S, et al. Aqueous humour levels of placental growth factor in diabetic retinopathy. Acta Ophthalmol. 2014. https://doi.org/10.1111/aos.12251.

    Article 
    PubMed 

    Google Scholar
     

  • Van Bergen T, Hu T-T, Etienne I, et al. Neutralization of placental growth factor as a novel treatment option in diabetic retinopathy. Exp Eye Res. 2017;165:136–50. https://doi.org/10.1016/j.exer.2017.09.012.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang H, He J, Johnson D, et al. Deletion of placental growth factor prevents diabetic retinopathy and is associated with akt activation and HIF1α-VEGF pathway inhibition. Diabetes. 2015;64:200–12. https://doi.org/10.2337/db14-0016.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He J, Wang H, Liu Y, et al. Blockade of vascular endothelial growth factor receptor 1 prevents inflammation and vascular leakage in diabetic retinopathy. J Ophthalmol. 2015;2015:1–11. https://doi.org/10.1155/2015/605946.

    Article 
    CAS 

    Google Scholar
     

  • Li S, Tao Y, Yang M, et al. Aflibercept 5+PRN with retinal laser photocoagulation is more effective than retinal laser photocoagulation alone and aflibercept 3+PRN with retinal laser photocoagulation in patients with high-risk proliferative diabetic retinopathy and diabetic macular edema: a 12-month clinical trial. Front Endocrinol. 2024;15:1286736. https://doi.org/10.3389/fendo.2024.1286736.

    Article 

    Google Scholar
     

  • Augustin HG, Young Koh G, Thurston G, Alitalo K. Control of vascular morphogenesis and homeostasis through the angiopoietin–tie system. Nat Rev Mol Cell Biol. 2009;10:165–77. https://doi.org/10.1038/nrm2639.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saharinen P, Eklund L, Alitalo K. Therapeutic targeting of the angiopoietin-tie pathway. Nat Rev Drug Discov. 2017;16:635–61. https://doi.org/10.1038/nrd.2016.278.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teichert M, Milde L, Holm A, et al. Pericyte-expressed Tie2 controls angiogenesis and vessel maturation. Nat Commun. 2017;8:16106. https://doi.org/10.1038/ncomms16106.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korhonen EA, Lampinen A, Giri H, et al. Tie1 controls angiopoietin function in vascular remodeling and inflammation. J Clin Invest. 2016;126:3495–510. https://doi.org/10.1172/JCI84923.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hakanpaa L, Sipila T, Leppanen V-M, et al. Endothelial destabilization by angiopoietin-2 via integrin β1 activation. Nat Commun. 2015;6:5962. https://doi.org/10.1038/ncomms6962.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Felcht M, Luck R, Schering A, et al. Angiopoietin-2 differentially regulates angiogenesis through Tie2 and integrin signaling. J Clin Invest. 2012;122:1991–2005. https://doi.org/10.1172/JCI58832.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vestweber D. Vascular endothelial protein tyrosine phosphatase regulates endothelial function. Physiology. 2021;36:84–93. https://doi.org/10.1152/physiol.00026.2020.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uemura A, Ogawa M, Hirashima M, et al. Recombinant angiopoietin-1 restores higher-order architecture of growing blood vessels in mice in the absence of mural cells. J Clin Invest. 2002;110:1619–28. https://doi.org/10.1172/JCI0215621.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai J, Kehoe O, Smith GM, et al. The angiopoietin/tie-2 system regulates pericyte survival and recruitment in diabetic retinopathy. Investig Opthalmology Vis Sci. 2008;49:2163. https://doi.org/10.1167/iovs.07-1206.

    Article 

    Google Scholar
     

  • Pfister F, Feng Y, vom Hagen F, et al. Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes. 2008;57:2495–502. https://doi.org/10.2337/db08-0325.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas M, Felcht M, Kruse K, et al. Angiopoietin-2 stimulation of endothelial cells induces αvβ3 integrin internalization and degradation. J Biol Chem. 2010;285:23842–9. https://doi.org/10.1074/jbc.M109.097543.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hammes H-P, Lin J, Wagner P, et al. Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy. Diabetes. 2004;53:1104–10. https://doi.org/10.2337/diabetes.53.4.1104.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agard NJ, Zhang G, Ridgeway J, et al. Direct Tie2 agonists stabilize vasculature for the treatment of diabetic macular edema. Transl Vis Sci Technol. 2022;11:27. https://doi.org/10.1167/tvst.11.10.27.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Regula JT, Lundh Von Leithner P, Foxton R, et al. Targeting key angiogenic pathways with a bispecific Cross ma b optimized for neovascular eye diseases. EMBO Mol Med. 2016;8:1265–88. https://doi.org/10.15252/emmm.201505889.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watanabe D, Suzuma K, Suzuma I, et al. Vitreous levels of angiopoietin 2 and vascular endothelial growth factor in patients with proliferative diabetic retinopathy. Am J Ophthalmol. 2005;139:476–81. https://doi.org/10.1016/j.ajo.2004.10.004.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wykoff CC, Abreu F, Adamis AP, et al. Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE): two randomised, double-masked, phase 3 trials. The Lancet. 2022;399:741–55. https://doi.org/10.1016/S0140-6736(22)00018-6.

    Article 
    CAS 

    Google Scholar
     

  • Braun LJ, Zinnhardt M, Vockel M, et al. VE—PTP inhibition stabilizes endothelial junctions by activating FGD 5. EMBO Rep. 2019. https://doi.org/10.1525/embr.201847046.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen J, Frye M, Lee BL, et al. Targeting VE-PTP activates Tie2 and stabilizes the ocular vasculature. J Clin Invest. 2014;124:4564–76. https://doi.org/10.1172/JCI74527.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campochiaro PA, Sophie R, Tolentino M, et al. Treatment of diabetic macular edema with an inhibitor of vascular endothelial-protein tyrosine phosphatase that activates Tie2. Ophthalmology. 2015;122:545–54. https://doi.org/10.1016/j.ophtha.2014.09.023.

    Article 
    PubMed 

    Google Scholar
     

  • Campochiaro PA, Khanani A, Singer M, et al. Enhanced benefit in diabetic macular edema from AKB-9778 Tie2 activation combined with vascular endothelial growth factor suppression. Ophthalmology. 2016;123:1722–30. https://doi.org/10.1016/j.ophtha.2016.04.025.

    Article 
    PubMed 

    Google Scholar
     

  • Abramsson A, Kurup S, Busse M, et al. Defective N -sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes Dev. 2007;21:316–31. https://doi.org/10.1101/gad.398207.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaengel K, Genové G, Armulik A, Betsholtz C. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol. 2009;29:630–8. https://doi.org/10.1161/ATVBAHA.107.161521.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindblom P, Gerhardt H, Liebner S, et al. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 2003;17:1835–40. https://doi.org/10.1101/gad.266803.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiss A, Attisano L. The TGFbeta superfamily signaling pathway. WIREs Dev Biol. 2013;2:47–63. https://doi.org/10.1002/wdev.86.

    Article 
    CAS 

    Google Scholar
     

  • Schmierer B, Hill CS. TGFβ–SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol. 2007;8:970–82. https://doi.org/10.1038/nrm2297.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santibañez JF, Quintanilla M, Bernabeu C. TGF-β/TGF-β receptor system and its role in physiological and pathological conditions. Clin Sci. 2011;121:233–51. https://doi.org/10.1042/CS20110086.

    Article 
    CAS 

    Google Scholar
     

  • Derynck R, Zhang YE. Smad-dependent and smad-independent pathways in TGF-β family signalling. Nature. 2003;425:577–84. https://doi.org/10.1038/nature02006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang YE. Non-smad signaling pathways of the TGF-β family. Cold Spring Harb Perspect Biol. 2017;9: a022129. https://doi.org/10.1101/cshperspect.a022129.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai Y, Wu Z, Wang F, et al. Identification of chemokines and growth factors in proliferative diabetic retinopathy vitreous. BioMed Res Int. 2014;2014:1–9. https://doi.org/10.1155/2014/486386.

    Article 
    CAS 

    Google Scholar
     

  • Hirase K. Transforming growth factor β2 in the vitreous in proliferative diabetic retinopathy. Arch Ophthalmol. 1998;116:738. https://doi.org/10.1001/archopht.116.6.738.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Behzadian MA, Wang XL, Windsor LJ, et al. TGF-beta increases retinal endothelial cell permeability by increasing MMP-9: possible role of glial cells in endothelial barrier function. Invest Ophthalmol Vis Sci. 2001;42:853–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Behzadian MA, Wang XL, Al-Shabrawey M, Caldwell RB. Effects of hypoxia on glial cell expression of angiogenesis-regulating factors VEGF and TGF-beta. Glia. 1998;24:216–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li F, Lan Y, Wang Y, et al. Endothelial smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with notch. Dev Cell. 2011;20:291–302. https://doi.org/10.1016/j.devcel.2011.01.011.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elmasry K, Habib S, Moustafa M, Al-Shabrawey M. Bone morphogenetic proteins and diabetic retinopathy. Biomolecules. 2021;11:593. https://doi.org/10.3390/biom11040593.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darwish NHE, Hussein KA, Elmasry K, et al. Bone morphogenetic protein-4 impairs retinal endothelial cell barrier, a potential role in diabetic retinopathy. Cells. 2023;12:1279. https://doi.org/10.3390/cells12091279.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hussein KA, Choksi K, Akeel S, et al. Bone morphogenetic protein 2: a potential new player in the pathogenesis of diabetic retinopathy. Exp Eye Res. 2014;125:79–88. https://doi.org/10.1016/j.exer.2014.05.012.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouletreau PJ, Warren SM, Spector JA, et al. Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing. Plast Reconstr Surg. 2002;109:2384–97. https://doi.org/10.1097/00006534-200206000-00033.

    Article 
    PubMed 

    Google Scholar
     

  • Al-Shabrawey M, Hussein K, Wang F, et al. Bone morphogenetic protein-2 induces non-canonical inflammatory and oxidative pathways in human retinal endothelial cells. Front Immunol. 2021;11: 568795. https://doi.org/10.3389/fimmu.2020.568795.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei D, Jin X, Wen L, et al. bmp3 is required for integrity of blood brain barrier by promoting pericyte coverage in zebrafish embryos. Curr Mol Med. 2017. https://doi.org/10.2174/1566524017666171106114234.

    Article 
    PubMed 

    Google Scholar
     

  • Dong L, Zhang Z, Liu X, et al. RNA sequencing reveals BMP4 as a basis for the dual-target treatment of diabetic retinopathy. J Mol Med. 2021;99:225–40. https://doi.org/10.1007/s00109-020-01995-8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu M, Li Z, Zhang H, et al. Inhibition of BMP4 alleviates diabetic retinal vascular dysfunction via the VEGF and smad1/5 signalling. Arch Physiol Biochem. 2023. https://doi.org/10.1080/13813455.2023.2190054.

    Article 
    PubMed 

    Google Scholar
     

  • Akla N, Viallard C, Popovic N, et al. BMP9 (bone morphogenetic protein-9)/Alk1 (activin-like kinase receptor type I) signaling prevents hyperglycemia-induced vascular permeability. Arterioscler Thromb Vasc Biol. 2018;38:1821–36. https://doi.org/10.1161/ATVBAHA.118.310733.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106:1319–31. https://doi.org/10.1161/CIRCRESAHA.110.217117.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishii H, Jirousek MR, Koya D, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC β inhibitor. Science. 1996;272:728–31. https://doi.org/10.1126/science.272.5262.728.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • The PKC-DRS Study Group. The effect of ruboxistaurin on visual loss in patients with moderately severe to very severe nonproliferative diabetic retinopathy. Diabetes. 2005;54:2188–97. https://doi.org/10.2337/diabetes.54.7.2188.

    Article 

    Google Scholar
     

  • Worzfeld T, Offermanns S. Semaphorins and plexins as therapeutic targets. Nat Rev Drug Discov. 2014;13:603–21. https://doi.org/10.1038/nrd4337.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roth L, Koncina E, Satkauskas S, et al. The many faces of semaphorins: from development to pathology. Cell Mol Life Sci. 2009;66:649. https://doi.org/10.1007/s00018-008-8518-z.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Liang H, Zhang C, et al. Ophthalmic solution of smart supramolecular peptides to capture semaphorin 4D against diabetic retinopathy. Adv Sci. 2023;10:2203351. https://doi.org/10.1002/advs.202203351.

    Article 
    CAS 

    Google Scholar
     

  • Wu J, Li Y, Chen A, et al. Inhibition of Sema4D/PlexinB1 signaling alleviates vascular dysfunction in diabetic retinopathy. EMBO Mol Med. 2020. https://doi.org/10.15252/emmm.201810154.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosen H, Stevens RC, Hanson M, et al. Sphingosine-1-phosphate and its receptors: structure, signaling, and influence. Annu Rev Biochem. 2013;82:637–62. https://doi.org/10.1146/annurev-biochem-062411-130916.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaengel K, Niaudet C, Hagikura K, et al. The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev Cell. 2012;23:587–99. https://doi.org/10.1016/j.devcel.2012.08.005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung B, Obinata H, Galvani S, et al. Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Dev Cell. 2012;23:600–10. https://doi.org/10.1016/j.devcel.2012.07.015.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alshaikh RA, Ryan KB, Waeber C. Sphingosine 1-phosphate, a potential target in neovascular retinal disease. Br J Ophthalmol. 2022;106:1187–95. https://doi.org/10.1136/bjophthalmol-2021-319115.

    Article 
    PubMed 

    Google Scholar
     

  • Wan Y, Jin H-J, Zhu Y-Y, et al. MicroRNA-149–5p regulates blood–brain barrier permeability after transient middle cerebral artery occlusion in rats by targeting S1PR2 of pericytes. FASEB J. 2018;32:3133–48. https://doi.org/10.1096/fj.201701121R.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ensari Delioğlu E, Uğurlu N, Erdal E, et al. Evaluation of sphingolipid metabolism on diabetic retinopathy. Indian J Ophthalmol. 2021;69:3376. https://doi.org/10.4103/ijo.IJO_3724_20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niaudet C, Jung B, Kuo A, et al. Therapeutic activation of endothelial sphingosine-1-phosphate receptor 1 by chaperone-bound S1P suppresses proliferative retinal neovascularization. EMBO Mol Med. 2023. https://doi.org/10.15252/emmm.202216645.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaczmarek R, Gajdzis P, Gajdzis M. Eph receptors and ephrins in retinal diseases. Int J Mol Sci. 2021;22:6207. https://doi.org/10.3390/ijms22126207.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foo SS, Turner CJ, Adams S, et al. Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell. 2006;124:161–73. https://doi.org/10.1016/j.cell.2005.10.034.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Chen D, Sun L, et al. Induced expression of VEGFC, ANGPT, and EFNB2 and their receptors characterizes neovascularization in proliferative diabetic retinopathy. Investig Opthalmology Vis Sci. 2019;60:4084. https://doi.org/10.1167/iovs.19-26767.

    Article 
    CAS 

    Google Scholar
     

  • Yuuki T, Kanda T, Kishi S. Expression of ephrin in retinal neovascularization and iris rubeosis. J Int Med Res. 2006;34:485–94. https://doi.org/10.1177/147323000603400505.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pitulescu ME, Adams RH. Regulation of signaling interactions and receptor endocytosis in growing blood vessels. Cell Adhes Migr. 2014;8:366–77. https://doi.org/10.4161/19336918.2014.970010.

    Article 

    Google Scholar
     

  • Coucha M, Barrett AC, Bailey J, et al. Increased Ephrin-B2 expression in pericytes contributes to retinal vascular death in rodents. Vascul Pharmacol. 2020;131: 106761. https://doi.org/10.1016/j.vph.2020.106761.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakayama A, Nakayama M, Turner CJ, et al. Ephrin-B2 controls PDGFRβ internalization and signaling. Genes Dev. 2013;27:2576–89. https://doi.org/10.1101/gad.224089.113.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishishita T, Lin PC. Angiopoietin 1, PDGF-B, and TGF-β gene regulation in endothelial cell and smooth muscle cell interaction. J Cell Biochem. 2004;91:584–93. https://doi.org/10.1002/jcb.10718.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Antonetti DA, Silva PS, Stitt AW. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat Rev Endocrinol. 2021;17:195–206. https://doi.org/10.1038/s41574-020-00451-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link