Scientific Papers

Application of fed-batch strategy to fully eliminate the negative effect of lignocellulose-derived inhibitors in ABE fermentation | Biotechnology for Biofuels and Bioproducts


  • Singh N, Singhania RR, Nigam PS, Dong CD, Kumar Patel A, Puri M. Global status of lignocellulosic biorefinery: Challenges and perspectives. Bioresour Technol. 2022. https://doi.org/10.1016/j.biortech.2021.126415.

    Article 
    PubMed 

    Google Scholar
     

  • Guo Y, Liu Y, Guan M, Tang H, Wang Z, Lin L, et al. Production of butanol from lignocellulosic biomass: recent advances, challenges, and prospects. RSC Adv. 2022. https://doi.org/10.1039/D1RA09396G.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Branská B. Biotechnological Production of Butanol. Chem List. 2024;118(2):86–94.

    Article 

    Google Scholar
     

  • Amiri H, Karimi K. Pretreatment and hydrolysis of lignocellulosic wastes for butanol production: Challenges and perspectives. Bioresour Technol. 2018;270:702–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jönsson LJ, Alriksson B, Nilvebrant NO. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels. 2013;6(1):16.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ning P, Yang G, Hu L, Sun J, Shi L, Zhou Y, et al. Recent advances in the valorization of plant biomass. Biotechnol Biofuels. 2021;14(1):1–22.

    Article 

    Google Scholar
     

  • Branska B, Fořtová L, Dvořáková M, Liu H, Patakova P, Zhang J, et al. Chicken feather and wheat straw hydrolysate for direct utilization in biobutanol production. Renew Energy. 2020;145:1941–8.

    Article 
    CAS 

    Google Scholar
     

  • Qureshi N, Saha BC, Liu S, Ezeji TC, Nichols NN. Cellulosic Butanol Biorefinery: Production of Biobutanol from High Solid Loadings of Sweet Sorghum Bagasse—Simultaneous Saccharification, Fermentation, and Product Recovery. Ferment. 2022;7(4):310.

    Article 

    Google Scholar
     

  • Rai AK, Al Makishah NH, Wen Z, Gupta G, Pandit S, Prasad R. Recent Developments in Lignocellulosic Biofuels, a Renewable Source of Bioenergy. Ferment. 2022;8(4):161.

    Article 
    CAS 

    Google Scholar
     

  • Holwerda EK, Worthen RS, Kothari N, Lasky RC, Davison BH, Fu C, et al. Multiple levers for overcoming the recalcitrance of lignocellulosic biomass. Biotechnol Biofuels. 2019;12(1):1–12.


    Google Scholar
     

  • Jȩdrzejczyk M, Soszka E, Czapnik M, Ruppert AM, Grams J. Physical and chemical pretreatment of lignocellulosic biomass. Second Third Gener Feed Evol Biofuels. 2019;1:143–96.


    Google Scholar
     

  • Balch ML, Chamberlain MB, Worthen RS, Holwerda EK, Lynd LR. Fermentation with continuous ball milling: Effectiveness at enhancing solubilization for several cellulosic feedstocks and comparative tolerance of several microorganisms. Biomass Bioenerg. 2020;1:134.


    Google Scholar
     

  • Klinke HB, Thomsen AB, Ahring BK. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 2004;66(1):10–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ujor VC, Okonkwo CC. Microbial detoxification of lignocellulosic biomass hydrolysates: Biochemical and molecular aspects, challenges, exploits and future perspectives. Front Bioeng Biotechnol. 2022;22(10):1061667.

    Article 

    Google Scholar
     

  • Zhang Y, Ujor V, Wick M, Ezeji TC. Identification, purification and characterization of furfural transforming enzymes from Clostridium beijerinckii NCIMB 8052. Anaerobe. 2015;33:124–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Liu Z, Chai X, Luo Y, Guo T, Ying H. Regulation of ρ-coumaric acid tolerance in Clostridium beijerinckii by disturbing the intracellular electron transport chain. Process Biochem. 2018;68:43–52.

    Article 
    CAS 

    Google Scholar
     

  • Gu Y, Jiang Y, Yang S, Jiang W. Utilization of economical substrate-derived carbohydrates by solventogenic clostridia: Pathway dissection, regulation and engineering. Curr Opinion Biotechnol. 2014. https://doi.org/10.1016/j.copbio.2014.04.004.

    Article 

    Google Scholar
     

  • Capilla M, Silvestre C, Valles A, Álvarez-Hornos FJ, San-Valero P, Gabaldón C. The Influence of Sugar Composition and pH Regulation in Batch and Continuous Acetone–Butanol–Ethanol Fermentation. Ferment. 2022;8(5):226.

    Article 
    CAS 

    Google Scholar
     

  • Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET. Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol. 2012;23(3):364–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Servinsky MD, Liu S, Gerlach ES, Germane KL, Sund CJ. Fermentation of oxidized hexose derivatives by Clostridium acetobutylicum. Microb Cell Fact. 2014;13(1):139.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baral NR, Shah A. Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass [Internet]. Vol. 98, Applied Microbiology and Biotechnology. Springer Berlin Heidelberg; 2014 [cited 2019 Jan 17]. p. 9151–72. Available from: http://link.springer.com/https://doi.org/10.1007/s00253-014-6106-8

  • Chacón SJ, Matias G, Vieira CF dos S, Ezeji TC, Maciel Filho R, Mariano AP. Enabling butanol production from crude sugarcane bagasse hemicellulose hydrolysate by batch-feeding it into molasses fermentation. Ind Crops Prod [Internet]. 2020 Nov 1 [cited 2020 Oct 16];155:112837. Available from: https://doi.org/10.1016/j.indcrop.2020.112837

  • Qureshi N, Saha BC, Klasson KT, Liu S. High solid fed-batch butanol fermentation with simultaneous product recovery: part II-process integration. Biotechnol Prog. 2018;34(4):967–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Branska B, Pechacova Z, Kolek J, Vasylkivska M, Patakova P. Flow cytometry analysis of Clostridium beijerinckii NRRL B-598 populations exhibiting different phenotypes induced by changes in cultivation conditions. Biotechnol Biofuels. 2018;11(1):99. https://doi.org/10.1186/s13068-018-1096-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo H, Zheng P, Bilal M, Xie F, Zeng Q, Zhu C, et al. Efficient bio-butanol production from lignocellulosic waste by elucidating the mechanisms of Clostridium acetobutylicum response to phenolic inhibitors. Sci Total Environ. 2020;25(710): 136399.

    Article 

    Google Scholar
     

  • Liu H, Zhang J, Yuan J, Jiang X, Jiang L, Li Z, et al. Gene coexpression network analysis reveals a novel metabolic mechanism of Clostridium acetobutylicum responding to phenolic inhibitors from lignocellulosic hydrolysates. Biotechnol Biofuels. 2020;13(1):163. https://doi.org/10.1186/s13068-020-01802-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho DH, Lee YJ, Um Y, Sang BI, Kim YH. Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium beijerinckii. Appl Microbiol Biotechnol. 2009;83(6):1035–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jönsson LJ, Martín C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol. 2016;199:103–12.

    Article 
    PubMed 

    Google Scholar
     

  • Xian X, Fang L, Zhou Y, Li B, Zheng X, Liu Y, et al. Integrated bioprocess for cellulosic ethanol production from wheat straw: new ternary deep-eutectic-solvent pretreatment, enzymatic saccharification, and fermentation. Fermentation. 2022;8(8):371.

    Article 
    CAS 

    Google Scholar
     

  • Luo H, Liu Z, Xie F, Bilal M, Peng F. Lignocellulosic biomass to biobutanol: Toxic effects and response mechanism of the combined stress of lignin-derived phenolic acids and phenolic aldehydes to Clostridium acetobutylicum. Ind Crops Prod. 2021;170:113722.

    Article 
    CAS 

    Google Scholar
     

  • Wang Z, Cao G, Jiang C, Song J, Zheng J, Yang Q. Butanol production from wheat straw by combining crude enzymatic hydrolysis and anaerobic fermentation using Clostridium acetobutylicum ATCC824. Energy Fuels. 2013;27(10):5900–6.

    Article 
    CAS 

    Google Scholar
     

  • Xin F, Wu YR, He J. Simultaneous fermentation of glucose and xylose to butanol by Clostridium sp. strain BOH3. Appl Environ Microbiol. 2014;80(15):4771–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okonkwo CC, Ujor V, Ezeji TC. Chromosomal integration of aldo-keto-reductase and short-chain dehydrogenase/reductase genes in Clostridium beijerinckii NCIMB 8052 enhanced tolerance to lignocellulose-derived microbial inhibitory compounds. Sci Rep. 2019;9(1):1–18.

    Article 
    CAS 

    Google Scholar
     

  • Jiang Y, Xu B, Yan W, Liu J, Dong W, Zhou J, et al. Inhibitors tolerance analysis of Clostridium sp. strain LJ4 and its application for butanol production from corncob hydrolysate through electrochemical detoxification. Biochem Eng J. 2021;167:107891.

    Article 
    CAS 

    Google Scholar
     

  • Liao Z, Guo X, Hu J, Suo Y, Fu H, Wang J. The significance of proline on lignocellulose-derived inhibitors tolerance in Clostridium acetobutylicum ATCC 824. Bioresour Technol. 2019;1(272):561–9.

    Article 

    Google Scholar
     

  • Lin Z, Liu H, Wu J, Patakova P, Branska B, Zhang J. Effective continuous acetone–butanol–ethanol production with full utilization of cassava by immobilized symbiotic TSH06. Biotechnol Biofuels. 2019;12(1):1–11.

    Article 

    Google Scholar
     

  • Patakova P, Branska B, Vasylkivska M, Jureckova K, Musilova J, Provaznik I, et al. Transcriptomic studies of solventogenic clostridia, Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol Adv. 2022;1(58): 107889.

    Article 

    Google Scholar
     

  • Zhang Y, Ezeji TC. Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 to elucidate role of furfural stress during acetone butanol ethanol fermentation. Biotechnol Biofuels. 2013;6(1):66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, Zhang J, Yuan J, Jiang X, Jiang L, Zhao G, et al. Omics-based analyses revealed metabolic responses of Clostridium acetobutylicum to lignocellulose-derived inhibitors furfural, formic acid and phenol stress for butanol fermentation. Biotechnol Biofuels. 2019;12(1):101.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ezeji T, Blaschek HP. Fermentation of dried distillers’ grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresour Technol. 2008;99(12):5232–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ezeji T, Qureshi N, Blaschek HP. ARTICLE Butanol Production From Agricultural Residues: Impact of Degradation Products on Clostridium beijerinckii Growth and Butanol Fermentation. Biotechnol Bioeng. 2007;97:1460–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bellido C, Lucas S, González-Benito G, García-Cubero MT, Coca M. Synergistic positive effect of organic acids on the inhibitory effect of phenolic compounds on Acetone-Butanol-Ethanol (ABE) production. Food Bioprod Process. 2018;108:117–25.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Han B, Ezeji TC. Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation. N Biotechnol. 2012;29(3):345–51.

    Article 
    PubMed 

    Google Scholar
     

  • Liu G, Yi Z, Li J, Yang L, Fang Y, Du A, et al. Detoxification with resin promotes the shift from acidogenesis to solventogenesis and prevents acid crash during butanol fermentation from wheat straw. Biomass Convers Biorefinery. 2023. https://doi.org/10.1007/s13399-023-04023-0.

    Article 

    Google Scholar
     

  • Lee KM, Min K, Choi O, Kim KY, Woo HM, Kim Y, et al. Electrochemical detoxification of phenolic compounds in lignocellulosic hydrolysate for Clostridium fermentation. Bioresour Technol. 2015. https://doi.org/10.1016/j.biortech.2015.03.129.

    Article 
    PubMed 

    Google Scholar
     

  • Sedlar K, Kolek J, Provaznik I, Patakova P. Reclassification of non-type strain Clostridium pasteurianum NRRL B-598 as Clostridium beijerinckii NRRL B-598. J Biotechnol. 2017;244:1–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vasylkivska M, Jureckova K, Branska B, Sedlar K, Kolek J, Provaznik I, et al. Transcriptional analysis of amino acid, metal ion, vitamin and carbohydrate uptake in butanol-producing Clostridium beijerinckii NRRL B-598. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0224560.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin Y, Fang Y, Huang M, Sun J, Huang Y, Gao X, et al. Combination of RNA sequencing and metabolite data to elucidate improved toxic compound tolerance and butanol fermentation of Clostridium acetobutylicum from wheat straw hydrolysate by supplying sodium sulfide. Bioresour Technol. 2015;198:77–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo T, Tang Y, Yan ZQ, Fei DT, Feng LD, Jiang M, et al. Clostridium beijerinckii mutant with high inhibitor tolerance obtained by low-energy ion implantation. J Ind Microbiol Biotechnol. 2012;39(3):401–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scott AF, Cresser-Brown J, Williams TL, Rizkallah PJ, Jin Y, Luk LYP, et al. Crystal Structure and Biophysical Analysis of Furfural-Detoxifying Aldehyde Reductase from Clostridium beijerinckii. Appl Environ Microbiol. 2019. https://doi.org/10.1128/AEM.00978-19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chamkha M, Garcia JL, Labat M. Metabolism of cinnamic acids by some Clostridiales and emendation of the descriptions of Clostridium aerotolerans, Clostridium celerecrescens and Clostridium xylanolyticum. Int J Syst Evol Microbiol. 2001;51(6):2105–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao D, Dong S, Wang P, Chen T, Wang J, Yue ZB, et al. Robustness of Clostridium saccharoperbutylacetonicum for acetone-butanol-ethanol production: Effects of lignocellulosic sugars and inhibitors. Fuel. 2017;208:549–57.

    Article 
    CAS 

    Google Scholar
     

  • Liu J, Lin Q, Chai X, Luo Y, Guo T. Enhanced phenolic compounds tolerance response of Clostridium beijerinckii NCIMB 8052 by inactivation of Cbei_3304. 2018 Mar 3 [cited 2019 Jan 15];17(1):35. Available from: https://doi.org/10.1186/s12934-018-0884-0

  • Liu J, Guo T, Shen X, Xu J, Wang J, Wang Y, et al. Engineering Clostridium beijerinckii with the Cbei_4693 gene knockout for enhanced ferulic acid tolerance. J Biotechnol. 2016;229:53–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zabihi R, Mowla D, Karimi G, Setoodeh P. Examination of the impacts of salinity and culture media compositions on Clostridium acetobutylicum NRRL B-591 growth and acetone-butanol-ethanol biosynthesis. J Environ Chem Eng. 2019;7(1):102835.

    Article 
    CAS 

    Google Scholar
     

  • Zhao X, Condruz S, Chen J, Jolicoeur M. A quantitative metabolomics study of high sodium response in Clostridium acetobutylicum ATCC 824 acetone-butanol-ethanol (ABE) fermentation. Sci Rep. 2019;6(1):28307.

    Article 

    Google Scholar
     

  • Qureshi N, Saha BC, Hector RE, Cotta MA. Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: Production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors. Biomass Bioenergy. 2008;32(12):1353–8.

    Article 
    CAS 

    Google Scholar
     

  • Adesanya Y, Atiyeh HK, Olorunsogbon T, Khanal A, Okonkwo CC, Ujor VC, et al. Viable strategies for enhancing acetone-butanol-ethanol production from non-detoxified switchgrass hydrolysates. Bioresour Technol. 2022;1(344): 126167.

    Article 

    Google Scholar
     

  • Jiménez-Bonilla P, Zhang J, Wang Y, Blersch D, de-Bashan LE, Guo L, et al. Enhancing the tolerance of Clostridium saccharoperbutylacetonicum to lignocellulosic-biomass-derived inhibitors for efficient biobutanol production by overexpressing efflux pumps genes from Pseudomonas putida. Bioresour Technol. 2020;312:123532.

    Article 
    PubMed 

    Google Scholar
     

  • Suo Y, Li W, Wan L, Luo L, Liu S, Qin S, et al. Transcriptome analysis reveals reasons for the low tolerance of Clostridium tyrobutyricum to furan derivatives. Appl Microbiol Biotechnol. 2023;107(1):327–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Branska B, Vasylkivska M, Raschmanova H, Jureckova K, Sedlar K, Provaznik I, et al. Changes in efflux pump activity of Clostridium beijerinckii throughout ABE fermentation. Appl Microbiol Biotechnol. 2021;105(2):877–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maddox I, Steiner E, Hirsch S, Wessner S, Gutierrez N, Gapes J, et al. The cause of “acid-crash” and “acidogenic fermentations” during the batch acetone-butanol-ethanol (ABE-) fermentation process. J Mol Microbiol Biotechnol. 2000;2(1):95–100.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen WH, Zeng YR. Mathematical model to appraise the inhibitory effect of phenolic compounds derived from lignin for biobutanol production. Bioresour Technol. 2018;1(261):44–51.

    Article 

    Google Scholar
     

  • Richmond C, Ujor V, Ezeji TC. Impact of syringaldehyde on the growth of Clostridium beijerinckii NCIMB 8052 and butanol production. 3 Biotech. 2012;2(2):159–67.

    Article 
    PubMed Central 

    Google Scholar
     

  • Wang S, Zhang Y, Dong H, Mao S, Zhu Y, Wang R, et al. Formic acid triggers the “acid crash” of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Appl Environ Microbiol. 2011;77(5):1674–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su C, Zhang C, Wu Y, Zhu Q, Wen J, Wang Y, et al. Combination of pH adjusting and intermittent feeding can improve fermentative acetone-butanol-ethanol (ABE) production from steam exploded corn stover. Renew Energy. 2022. https://doi.org/10.1016/j.renene.2022.10.008.

    Article 

    Google Scholar
     

  • Birgen C, Degnes KF, Markussen S, Wentzel A, Sletta H. Butanol production from lignocellulosic sugars by Clostridium beijerinckii in microbioreactors. Biotechnol Biofuels. 2021. https://doi.org/10.1186/s13068-021-01886-1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Birgen C, Markussen S, Wentzel A, Preisig HA. The Effect of Feeding Strategy on Butanol Production by Clostridium beijerinckii NCIMB 8052 using Glucose and Xylose. Chem Eng Trans. 2018;65:283–8.


    Google Scholar
     

  • Birgen C, Dürre P, Preisig HA, Wentzel A. Butanol production from lignocellulosic biomass: revisiting fermentation performance indicators with exploratory data analysis. Biotechnol Biofuels. 2019;12:167. https://doi.org/10.1186/s13068-019-1508-6



  • Source link