Scientific Papers

Central imaging based on near-infrared functional imaging technology can be useful to plan management in patients with chronic lateral ankle instability | Journal of Orthopaedic Surgery and Research


  • Brown CN, Mynark R. Balance deficits in recreational athletes with chronic ankle instability. J Athl Train. 2007;42(3):367–73.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Azevedo Sodre Silva A, Sassi LB, Martins TB, de Menezes FS, Migliorini F, Maffulli N, Okubo R. Epidemiology of injuries in young volleyball athletes: a systematic review. J Orthop Surg Res. 2023;18(1):748.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simon J, Hall E, Docherty C. Prevalence of chronic ankle instability and associated symptoms in university dance majors: an exploratory study. J Dance Med Sci. 2014;18(4):178–84.

    Article 
    PubMed 

    Google Scholar
     

  • Tanen L, Docherty CL, Van Der Pol B, Simon J, Schrader J. Prevalence of chronic ankle instability in high school and division I athletes. Foot Ankle Spec. 2014;7(1):37–44.

    Article 
    PubMed 

    Google Scholar
     

  • Feger MA, Glaviano NR, Donovan L, Hart JM, Saliba SA, Park JS, Hertel J. Current trends in the management of lateral ankle sprain in the United States. Clin J Sport Med. 2017;27(2):145–52.

    Article 
    PubMed 

    Google Scholar
     

  • Hiller CE, Nightingale EJ, Raymond J, Kilbreath SL, Burns J, Black DA, Refshauge KM. Prevalence and impact of chronic musculoskeletal ankle disorders in the community. Arch Phys Med Rehabil. 2012;93(10):1801–7.

    Article 
    PubMed 

    Google Scholar
     

  • Freeman MA, Dean MR, Hanham IW. The etiology and prevention of functional instability of the foot. J Bone Joint Surg Br. 1965;47(4):678–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olmsted LC, Carcia CR, Hertel J, Shultz SJ. Efficacy of the Star Excursion Balance tests in detecting Reach deficits in subjects with chronic ankle instability. J Athl Train. 2002;37(4):501–6.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gribble PA, Delahunt E, Bleakley C, Caulfield B, Docherty CL, Fourchet F, Fong D, Hertel J, Hiller C, Kaminski TW, et al. Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the International Ankle Consortium. J Orthop Sports Phys Ther. 2013;43(8):585–91.

    Article 
    PubMed 

    Google Scholar
     

  • Hertel J. Functional anatomy, Pathomechanics, and pathophysiology of lateral ankle instability. J Athl Train. 2002;37(4):364–75.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gribble PA, Bleakley CM, Caulfield BM, Docherty CL, Fourchet F, Fong DT, Hertel J, Hiller CE, Kaminski TW, McKeon PO, et al. Evidence review for the 2016 International Ankle Consortium consensus statement on the prevalence, impact and long-term consequences of lateral ankle sprains. Br J Sports Med. 2016;50(24):1496–505.

    Article 
    PubMed 

    Google Scholar
     

  • Delahunt E, Bleakley CM, Bossard DS, Caulfield BM, Docherty CL, Doherty C, Fourchet F, Fong DT, Hertel J, Hiller CE, et al. Clinical assessment of acute lateral ankle sprain injuries (ROAST): 2019 consensus statement and recommendations of the International Ankle Consortium. Br J Sports Med. 2018;52(20):1304–10.

    Article 
    PubMed 

    Google Scholar
     

  • Hertel J. Sensorimotor deficits with ankle sprains and chronic ankle instability. Clin Sports Med. 2008;27(3):353–70. vii.

    Article 
    PubMed 

    Google Scholar
     

  • Freeman MA. Instability of the foot after injuries to the lateral ligament of the ankle. J Bone Joint Surg Br. 1965;47(4):669–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferran NA, Oliva F, Maffulli N. Ankle instability. Sports Med Arthrosc Rev. 2009;17(2):139–45.

    Article 
    PubMed 

    Google Scholar
     

  • Hoch MC, Staton GS, Medina McKeon JM, Mattacola CG, McKeon PO. Dorsiflexion and dynamic postural control deficits are present in those with chronic ankle instability. J Sci Med Sport. 2012;15(6):574–9.

    Article 
    PubMed 

    Google Scholar
     

  • Son SJ, Kim H, Seeley MK, Hopkins JT. Movement strategies among groups of chronic ankle instability, Coper, and control. Med Sci Sports Exerc. 2017;49(8):1649–61.

    Article 
    PubMed 

    Google Scholar
     

  • Xiaojian S, Hanjia, Yu L, Xueqiang W, Peijie C. Research progress on pathological mechanism, evaluation and diagnosis of chronic ankle instability. Chin J Sports Med. 2019;11(9):816–24.


    Google Scholar
     

  • Ferran NA, Maffulli N. Epidemiology of sprains of the lateral ankle ligament complex. Foot Ankle Clin. 2006;11(3):659–62.

    Article 
    PubMed 

    Google Scholar
     

  • Baetens T, De Kegel A, Palmans T, Oostra K, Vanderstraeten G, Cambier D. Gait analysis with cognitive-motor dual tasks to distinguish fallers from nonfallers among rehabilitating stroke patients. Arch Phys Med Rehabil. 2013;94(4):680–6.

    Article 
    PubMed 

    Google Scholar
     

  • Mitra S, Knight A, Munn A. Divergent effects of cognitive load on quiet stance and task-linked postural coordination. J Exp Psychol Hum Percept Perform. 2013;39(2):323–8.

    Article 
    PubMed 

    Google Scholar
     

  • Weeks DL, Forget R, Mouchnino L, Gravel D, Bourbonnais D. Interaction between attention demanding motor and cognitive tasks and static postural stability. Gerontology. 2003;49(4):225–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kluzik J, Peterka RJ, Horak FB. Adaptation of postural orientation to changes in surface inclination. Exp Brain Res. 2007;178(1):1–17.

    Article 
    PubMed 

    Google Scholar
     

  • Edwards AD, Wyatt JS, Richardson C, Delpy DT, Cope M, Reynolds EO. Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy. Lancet. 1988;2(8614):770–1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jalalvandi M, Riyahi Alam N, Sharini H, Hashemi H, Nadimi M. Brain cortical activation during Imagining of the wrist Movement using functional Near-Infrared Spectroscopy (fNIRS). J Biomed Phys Eng. 2021;11(5):583–94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • J M, S H, N Y, RA N. Assessment of Brain cortical activation in Passive Movement during wrist Task using functional Near Infrared Spectroscopy (fNIRS). Front Biomed Technol. 2019;6(2):99–105.


    Google Scholar
     

  • Harada T, Miyai I, Suzuki M, Kubota K. Gait capacity affects cortical activation patterns related to speed control in the elderly. Exp Brain Res. 2009;193(3):445–54.

    Article 
    PubMed 

    Google Scholar
     

  • Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T, Kubota K. Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. NeuroImage. 2001;14(5):1186–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki M, Miyai I, Ono T, Oda I, Konishi I, Kochiyama T, Kubota K. Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study. NeuroImage. 2004;23(3):1020–6.

    Article 
    PubMed 

    Google Scholar
     

  • Sahyoun C, Floyer-Lea A, Johansen-Berg H, Matthews PM. Towards an understanding of gait control: brain activation during the anticipation, preparation and execution of foot movements. NeuroImage. 2004;21(2):568–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yazawa S, Shibasaki H, Ikeda A, Terada K, Nagamine T, Honda M. Cortical mechanism underlying externally cued gait initiation studied by contingent negative variation. Electroencephalogr Clin Neurophysiol. 1997;105(5):390–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miyai I, Yagura H, Oda I, Konishi I, Eda H, Suzuki T, Kubota K. Premotor cortex is involved in restoration of gait in stroke. Ann Neurol. 2002;52(2):188–94.

    Article 
    PubMed 

    Google Scholar
     

  • Mihara M, Miyai I, Hatakenaka M, Kubota K, Sakoda S. Sustained prefrontal activation during ataxic gait: a compensatory mechanism for ataxic stroke? NeuroImage. 2007;37(4):1338–45.

    Article 
    PubMed 

    Google Scholar
     

  • Doi T, Makizako H, Shimada H, Park H, Tsutsumimoto K, Uemura K, Suzuki T. Brain activation during dual-task walking and executive function among older adults with mild cognitive impairment: a fNIRS study. Aging Clin Exp Res. 2013;25(5):539–44.

    Article 
    PubMed 

    Google Scholar
     

  • Beurskens R, Helmich I, Rein R, Bock O. Age-related changes in prefrontal activity during walking in dual-task situations: a fNIRS study. Int J Psychophysiol. 2014;92(3):122–8.

    Article 
    PubMed 

    Google Scholar
     

  • Hill A, Bohil C, Lewis J, Neider M. Prefrontal cortex activity during walking while multitasking: an fNIR study. Proc Hum. 2013;23(57):1224–8.


    Google Scholar
     

  • Holtzer R, Mahoney JR, Izzetoglu M, Izzetoglu K, Onaral B, Verghese J. fNIRS study of walking and walking while talking in young and old individuals. J Gerontol Biol Sci Med Sci. 2011;66(8):879–87.

    Article 

    Google Scholar
     

  • Watson EL, Bearden AC, Doughton JH, Needle AR. The effects of multiple modalities of cognitive loading on dynamic Postural Control in individuals with chronic ankle instability. Gait Posture. 2020;79:10–5.

    Article 
    PubMed 

    Google Scholar
     

  • Hamacher D, Herold F, Wiegel P, Hamacher D, Schega L. Brain activity during walking: a systematic review. Neurosci Biobehav Rev. 2015;57:310–27.

    Article 
    PubMed 

    Google Scholar
     

  • Pelicioni PHS, Tijsma M, Lord SR, Menant J. Prefrontal cortical activation measured by fNIRS during walking: effects of age, disease and secondary task. PeerJ. 2019;7:e6833.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacobsen NSJ, Blum S, Scanlon JEM, Witt K, Debener S. Mobile electroencephalography captures differences of walking over even and uneven terrain but not of single and dual-task gait. Front Sports Act Living. 2022;4:945341.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Funahashi S, Andreau JM. Prefrontal cortex and neural mechanisms of executive function. J Physiol Paris. 2013;107(6):471–82.

    Article 
    PubMed 

    Google Scholar
     

  • Rae CL, Hughes LE, Anderson MC, Rowe JB. The prefrontal cortex achieves inhibitory control by facilitating subcortical motor pathway connectivity. J Neurosci. 2015;35(2):786–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belli V, Orcioli-Silva D, Beretta VS, Vitorio R, Zampier VC, Nobrega-Sousa P, Conceicao NRD, Gobbi LTB. Prefrontal cortical activity during Preferred and fast walking in Young and older adults: an fNIRS Study. Neuroscience. 2021;473:81–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fukuyama H, Ouchi Y, Matsuzaki S, Nagahama Y, Yamauchi H, Ogawa M, Kimura J, Shibasaki H. Brain functional activity during gait in normal subjects: a SPECT study. Neurosci Lett. 1997;228(3):183–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cabeza R, Anderson ND, Locantore JK, McIntosh AR. Aging gracefully: compensatory brain activity in high-performing older adults. NeuroImage. 2002;17(3):1394–402.

    Article 
    PubMed 

    Google Scholar
     

  • Heuninckx S, Wenderoth N, Swinnen SP. Systems neuroplasticity in the aging brain: recruiting additional neural resources for successful motor performance in elderly persons. J Neurosci. 2008;28(1):91–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosano C, Aizenstein H, Cochran J, Saxton J, De Kosky S, Newman AB, Kuller LH, Lopez OL, Carter CS. Functional neuroimaging indicators of successful executive control in the oldest old. NeuroImage. 2005;28(4):881–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stern Y, Barulli D. Cognitive reserve. Handb Clin Neurol. 2019;167:181–90.

    Article 
    PubMed 

    Google Scholar
     

  • van Hedel HJA, Bulloni A, Gut A. Prefrontal cortex and supplementary motor Area Activation during Robot-assisted weight-supported Over-ground walking in Young neurological patients: a Pilot fNIRS Study. Front Rehabil Sci. 2021;2:788087.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allali G, van der Meulen M, Beauchet O, Rieger SW, Vuilleumier P, Assal F. The neural basis of age-related changes in motor imagery of gait: an fMRI study. J Gerontol Biol Sci Med Sci. 2014;69(11):1389–98.

    Article 

    Google Scholar
     

  • Cai T, Zhu H, Xu J, Wu S, Li X, He S. Human cortical neural correlates of visual fatigue during binocular depth perception: an fNIRS study. PLoS ONE. 2017;12(2):e0172426.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosen AB, Yentes JM, McGrath ML, Maerlender AC, Myers SA, Mukherjee M. Alterations in cortical activation among individuals with chronic ankle instability during single-limb Postural Control. J Athl Train. 2019;54(6):718–26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bridgman SA, Clement D, Downing A, Walley G, Phair I, Maffulli N. Population based epidemiology of ankle sprains attending accident and emergency units in the West Midlands of England, and a survey of UK practice for severe ankle sprains. Emerg Med J. 2003;20(6):508–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vitorio R, Stuart S, Rochester L, Alcock L, Pantall A. fNIRS response during walking – artefact or cortical activity? A systematic review. Neurosci Biobehav Rev. 2017;83:160–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Putzolu M, Samogin J, Cosentino C, Mezzarobba S, Bonassi G, Lagravinese G, Vato A, Mantini D, Avanzino L, Pelosin E. Neural oscillations during motor imagery of complex gait: an HdEEG study. Sci Rep. 2022;12(1):4314.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • M HS. Identification of the Pain process by Cold Stimulation: using Dynamic Causal modeling of effective connectivity in Functional Near-Infrared Spectroscopy (fNIRS). IRBM. 2019;40(2):86–94.

    Article 

    Google Scholar
     

  • Zhou X, Wan Y, Xu Z, Yu C, Wu Z, Zhuang Z, Xia R, Wang H, Chen S. Utilizing fNIRS to investigate the impact of Baduanjin training on attentional function in post-stroke cognitive impairment patients: a study protocol for a randomized controlled trial. BMC Complement Med Ther. 2024;24(1):30.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zu YM, Luo LN, Chen XP, Xie HX, Yang CHR, Qi Y, Niu WX. Characteristics of corticomuscular coupling during wheelchair Tai Chi in patients with spinal cord injury. J NeuroEngg Rehab. 2023;20:79.

  • Xia WL, Dai RX, Xu XJ, Huai BY, Bai ZF, Zhang JQ, Jin MX, Niu WX. Cortical mapping of active and passive upper limb training in stroke patients and healthy people: A functional near-infrared spectroscopy study. Brain Research. 2022;1788:147935.

  • McPhee AM, Cheung TCK, Schmuckler MA. Dual-task interference as a function of varying motor and cognitive demands. Front Psychol. 2022;13:952245.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sui SX, Hendy AM, Teo WP, Moran JT, Nuzum ND, Pasco JA. A review of the measurement of the neurology of Gait in Cognitive Dysfunction or Dementia, focusing on the application of fNIRS during Dual-Task Gait Assessment. Brain Sci 2022, 12(8).



  • Source link