Scientific Papers

Tumor promoting effect of PDLIM2 downregulation involves mitochondrial ROS, oncometabolite accumulations and HIF-1α activation | Journal of Experimental & Clinical Cancer Research


  • Finley LWS. What is cancer metabolism? Cell. 2023;186(8):1670–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao Y, Yu TJ, Xu Y, Ding R, Wang YP, Jiang YZ, et al. Emerging therapies in cancer metabolism. Cell Metab. 2023;35(8):1283–303.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeBerardinis RJ, Chandel NS . Fundamentals of cancer metabolism. Sci Adv. 2016;2(5): e1600200.

  • Gregorio Di J, Petricca S, Iorio R, Toniato E, Flati V. Mitochondrial and metabolic alterations in cancer cells. Eur J Cell Biol. 2022;101(3):151225.

  • PK Arnold LWS Finley. Regulation and function of the mammalian tricarboxylic acid cycle. J Biol Chem. 2023;299(2):102838.

  • Martinez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020;11(1):102.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foo BJ, Eu JQ, Hirpara JL, Pervaiz S. Interplay between Mitochondrial Metabolism and Cellular Redox State Dictates Cancer Cell Survival. Oxid Med Cell Longev. 2021;2021:1341604.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernansanz-Agustin P, Enriquez JA. Generation of Reactive Oxygen Species by Mitochondria. Antioxidants (Basel). 2021;10(3):415.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fuhrmann DC, Brune B. Mitochondrial composition and function under the control of hypoxia. Redox Biol. 2017;12:208–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai Y, Wang Z, Guo S, Lin C, Yao H, Yang Q, et al. Detection, mechanisms, and therapeutic implications of oncometabolites. Trends Endocrinol Metab. 2023;34:849–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baryla M, Semeniuk-Wojtas A, Rog L, Kraj L, Malyszko M, Stec R. Oncometabolites-A Link between Cancer Cells and Tumor Microenvironment. Biology (Basel). 2022;11(2):270.

    CAS 
    PubMed 

    Google Scholar
     

  • Morin A, Letouze E, Gimenez-Roqueplo AP, Favier J. Oncometabolites-driven tumorigenesis: From genetics to targeted therapy. Int J Cancer. 2014;135(10):2237–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dalla Pozza E, Dando I, Pacchiana R, Liboi E, Scupoli MT, Donadelli M, et al. Regulation of succinate dehydrogenase and role of succinate in cancer. Semin Cell Dev Biol. 2020;98:4–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eijkelenkamp K, Osinga TE, Links TP, van der Horst-Schrivers ANA. Clinical implications of the oncometabolite succinate in SDHx-mutation carriers. Clin Genet. 2020;97(1):39–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tretter L, Patocs A, Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim Biophys Acta. 2016;1857(8):1086–101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005;7(1):77–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • LaGory EL, Giaccia AJ. The ever-expanding role of HIF in tumour and stromal biology. Nat Cell Biol. 2016;18(4):356–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balamurugan K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int J Cancer. 2016;138(5):1058–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pezzuto A, Carico E. Role of HIF-1 in Cancer Progression: Novel Insights. A Review Curr Mol Med. 2018;18(6):343–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92(12):5510–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salceda S, Caro J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem. 1997;272(36):22642–7.

  • M Ivan K Kondo H Yang W Kim J Valiando M Ohh. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464-8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, et al. Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem. 2000;275(33):25733–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2000;275(33):25130–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patten DA, Lafleur VN, Robitaille GA, Chan DA, Giaccia AJ, Richard DE. Hypoxia-inducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrial-derived reactive oxygen species. Mol Biol Cell. 2010;21(18):3247–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lacher SE, Levings DC, Freeman S, Slattery M. Identification of a functional antioxidant response element at the HIF1A locus. Redox Biol. 2018;19:401–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torrado M, Senatorov VV, Trivedi R, Fariss RN, Tomarev SI. Pdlim2, a novel PDZ-LIM domain protein, interacts with alpha-actinins and filamin A. Invest Ophthalmol Vis Sci. 2004;45(11):3955–63.

    Article 
    PubMed 

    Google Scholar
     

  • Tanaka T, Grusby MJ, Kaisho T. PDLIM2-mediated termination of transcription factor NF-kappaB activation by intranuclear sequestration and degradation of the p65 subunit. Nat Immunol. 2007;8(6):584–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bowe RA, Cox OT, Ayllon V, Tresse E, Healy NC, Edmunds SJ, et al. PDLIM2 regulates transcription factor activity in epithelial-to-mesenchymal transition via the COP9 signalosome. Mol Biol Cell. 2014;25(1):184–95.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng Y, Lin D, Gao M, Du G, Cai Y. Systematic evaluation of the prognostic and immunological role of PDLIM2 across 33 cancer types. Sci Rep. 2022;12(1):1933.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fisher LAB, Schock F. The unexpected versatility of ALP/Enigma family proteins. Front Cell Dev Biol. 2022;10:963608.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo ZS, Qu Z. PDLIM2: Signaling pathways and functions in cancer suppression and host immunity. Biochim Biophys Acta Rev Cancer. 2021;1876(2):188630.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thandra KC, Barsouk A, Saginala K, Aluru JS, Barsouk A. Epidemiology of lung cancer. Contemp Oncol (Pozn). 2021;25(1):45–52.

    CAS 
    PubMed 

    Google Scholar
     

  • Ashrafi A, Akter Z, Modareszadeh P, Modareszadeh P, Berisha E, Alemi PS, et al. Current landscape of therapeutic resistance in lung cancer and promising strategies to overcome resistance. Cancers (Basel). 2022;14(19):4562.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lemjabbar-Alaoui H, Hassan OU, Yang YW, Buchanan P. Lung cancer: Biology and treatment options. Biochim Biophys Acta. 2015;1856(2):189–210.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, et al. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia. 2017;19(8):649–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gyorffy B. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput Struct Biotechnol J. 2021;19:4101–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1.

  • Luo Y, Ma J, Lu W. The Significance of Mitochondrial Dysfunction in Cancer. Int J Mol Sci. 2020;21(16):5598.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang W, Suzuki M, Saito T, Miyado K. Emerging Role of TCA Cycle-Related Enzymes in Human Diseases. Int J Mol Sci. 2021;22(23):13057.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eniafe J, Jiang S. The functional roles of TCA cycle metabolites in cancer. Oncogene. 2021;40(19):3351–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeh DW, Chen YS, Lai CY, Liu YL, Lu CH, Lo JF, et al. Downregulation of COMMD1 by miR-205 promotes a positive feedback loop for amplifying inflammatory- and stemness-associated properties of cancer cells. Cell Death Differ. 2016;23(5):841–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burke JR, Pattoli MA, Gregor KR, Brassil PJ, MacMaster JF, McIntyre KW, et al. BMS-345541 is a highly selective inhibitor of I kappa B kinase that binds at an allosteric site of the enzyme and blocks NF-kappa B-dependent transcription in mice. J Biol Chem. 2003;278(3):1450–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nisr RB, Shah DS, Ganley IG, Hundal HS. Proinflammatory NFkB signalling promotes mitochondrial dysfunction in skeletal muscle in response to cellular fuel overloading. Cell Mol Life Sci. 2019;76(24):4887–904.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mateska I, Witt A, Hagag E, Sinha A, Yilmaz C, Thanou E, et al. Succinate mediates inflammation-induced adrenocortical dysfunction. Elife. 2023;12:e83064.

  • Capece D, Verzella D, Flati I, Arboretto P, Cornice J, Franzoso G. NF-kappaB: blending metabolism, immunity, and inflammation. Trends Immunol. 2022;43(9):757–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boulton DP, Caino MC. Mitochondrial Fission and Fusion in Tumor Progression to Metastasis Front Cell Dev Biol. 2022;10:849962.

  • Dai W, Jiang L. Dysregulated Mitochondrial Dynamics and Metabolism in Obesity, Diabetes, and Cancer. Front Endocrinol (Lausanne). 2019;10:570.

    Article 
    PubMed 

    Google Scholar
     

  • Jezek J, Cooper KF, Strich R. Reactive Oxygen Species and Mitochondrial Dynamics: The Yin and Yang of Mitochondrial Dysfunction and Cancer Progression. Antioxidants (Basel). 2018;7(1):13.

    Article 
    PubMed 

    Google Scholar
     

  • Ko SH, Choi GE, Oh JY, Lee HJ, Kim JS, Chae CW, et al. Succinate promotes stem cell migration through the GPR91-dependent regulation of DRP1-mediated mitochondrial fission. Sci Rep. 2017;7(1):12582.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meneses AM, Wielockx B. PHD2: from hypoxia regulation to disease progression. Hypoxia (Auckl). 2016;4:53–67.

    PubMed 

    Google Scholar
     

  • Fong GH, Takeda K. Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ. 2008;15(4):635–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Molagoda IMN, Lee KT, Choi YH, Kim GY. Anthocyanins from Hibiscus syriacus L. Inhibit Oxidative Stress-Mediated Apoptosis by Activating the Nrf2/HO-1 Signaling Pathway. Antioxidants (Basel). 2020;9(1):42.

  • Tanaka Y, Konishi A, Obinata H, Tsuneoka M. Metformin activates KDM2A to reduce rRNA transcription and cell proliferation by dual regulation of AMPK activity and intracellular succinate level. Sci Rep. 2019;9(1):18694.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonello S, Zahringer C, BelAiba RS, Djordjevic T, Hess J, Michiels C, et al. Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol. 2007;27(4):755–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung SN, Yang WK, Kim J, Kim HS, Kim EJ, Yun H, et al. Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells. Carcinogenesis. 2008;29(4):713–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koh MY, Spivak-Kroizman T, Venturini S, Welsh S, Williams RR, Kirkpatrick DL, et al. Molecular mechanisms for the activity of PX-478, an antitumor inhibitor of the hypoxia-inducible factor-1alpha. Mol Cancer Ther. 2008;7(1):90–100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee K, Kim HM. A novel approach to cancer therapy using PX-478 as a HIF-1alpha inhibitor. Arch Pharm Res. 2011;34(10):1583–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao L, Yu C, Zhou S, Lau WB, Lau B, Luo Z, et al. Epigenetic repression of PDZ-LIM domain-containing protein 2 promotes ovarian cancer via NOS2-derived nitric oxide signaling. Oncotarget. 2016;7(2):1408–20.

    Article 
    PubMed 

    Google Scholar
     

  • Lv W, Guo H, Wang J, Ma R, Niu L, Shang Y. PDLIM2 can inactivate the TGF-beta/Smad pathway to inhibit the malignant behavior of ovarian cancer cells. Cell Biochem Funct. 2023;41(5):542–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang X, Chu Z, Cao Y, Tang Y, Shi Y, Shi X. PDLIM2 prevents the malignant phenotype of hepatocellular carcinoma cells by negatively regulating beta-catenin. Cancer Gene Ther. 2021;28(10–11):1113–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qu Z, Fu J, Yan P, Hu J, Cheng SY, Xiao G. Epigenetic repression of PDZ-LIM domain-containing protein 2: implications for the biology and treatment of breast cancer. J Biol Chem. 2010;285(16):11786–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun F, Li L, Yan P, Zhou J, Shapiro SD, Xiao G, et al. Causative role of PDLIM2 epigenetic repression in lung cancer and therapeutic resistance. Nat Commun. 2019;10(1):5324.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu S, Sun X, Wang M, Hou Y, Zhan Y, Jiang Y, et al. A microRNA 221- and 222-mediated feedback loop maintains constitutive activation of NFkappaB and STAT3 in colorectal cancer cells. Gastroenterology. 2014;147(4):847–59 e11.

  • Qu Z, Yan P, Fu J, Jiang J, Grusby MJ, Smithgall TE, et al. DNA methylation-dependent repression of PDZ-LIM domain-containing protein 2 in colon cancer and its role as a potential therapeutic target. Cancer Res. 2010;70(5):1766–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polytarchou C, Hommes DW, Palumbo T, Hatziapostolou M, Koutsioumpa M, Koukos G, et al. MicroRNA214 Is Associated With Progression of Ulcerative Colitis, and Inhibition Reduces Development of Colitis and Colitis-Associated Cancer in Mice. Gastroenterology. 2015;149(4):981–92 e11.

  • Cox OT, Edmunds SJ, Simon-Keller K, Li B, Moran B, Buckley NE, et al. PDLIM2 Is a Marker of Adhesion and beta-Catenin Activity in Triple-Negative Breast Cancer. Cancer Res. 2019;79(10):2619–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song G, Xu J, He L, Sun X, Xiong R, Luo Y, et al. Systematic profiling identifies PDLIM2 as a novel prognostic predictor for oesophageal squamous cell carcinoma (ESCC). J Cell Mol Med. 2019;23(8):5751–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui L, Cheng Z, Hu K, Pang Y, Liu Y, Qian T, et al. Prognostic value of the PDLIM family in acute myeloid leukemia. Am J Transl Res. 2019;11(9):6124–31.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piao S, Zheng L, Zheng H, Zhou M, Feng Q, Zhou S, et al. High Expression of PDLIM2 Predicts a Poor Prognosis in Prostate Cancer and Is Correlated with Epithelial-Mesenchymal Transition and Immune Cell Infiltration. J Immunol Res. 2022;2022:2922832.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao K, Xu J, Cao W, Wang X, Lv W, Zeng M, et al. Assembly of mitochondrial succinate dehydrogenase in human health and disease. Free Radic Biol Med. 2023;207:247–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moosavi B, Zhu XL, Yang WC, Yang GF. Molecular pathogenesis of tumorigenesis caused by succinate dehydrogenase defect. Eur J Cell Biol. 2020;99(1):151057.

  • Amar L, Baudin E, Burnichon N, Peyrard S, Silvera S, Bertherat J, et al. Succinate dehydrogenase B gene mutations predict survival in patients with malignant pheochromocytomas or paragangliomas. J Clin Endocrinol Metab. 2007;92(10):3822–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hensen EF, Bayley JP. Recent advances in the genetics of SDH-related paraganglioma and pheochromocytoma. Fam Cancer. 2011;10(2):355–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nazar E, Khatami F, Saffar H, Tavangar SM. The Emerging Role of Succinate Dehyrogenase Genes (SDHx) in Tumorigenesis. Int J Hematol Oncol Stem Cell Res. 2019;13(2):72–82.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • MacFarlane J, Seong KC, Bisambar C, Madhu B, Allinson K, Marker A, et al. A review of the tumour spectrum of germline succinate dehydrogenase gene mutations: Beyond phaeochromocytoma and paraganglioma. Clin Endocrinol (Oxf). 2020;93(5):528–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aghamir SMK, Heshmat R, Ebrahimi M, Ketabchi SE, Parichehreh Dizaji S, Khatami F. The Impact Of Succinate Dehydrogenase Gene (SDH) Mutations In Renal Cell Carcinoma (RCC): A Systematic Review. Onco Targets Ther. 2019;12:7929–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ibrahim A, Chopra S. Succinate Dehydrogenase-Deficient Gastrointestinal Stromal Tumors. Arch Pathol Lab Med. 2020;144(5):655–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni Y, Seballos S, Ganapathi S, Gurin D, Fletcher B, Ngeow J, et al. Germline and somatic SDHx alterations in apparently sporadic differentiated thyroid cancer. Endocr Relat Cancer. 2015;22(2):121–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lambert AJ, Brand MD. Reactive oxygen species production by mitochondria. Methods Mol Biol. 2009;554:165–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quinlan CL, Orr AL, Perevoshchikova IV, Treberg JR, Ackrell BA, Brand MD. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J Biol Chem. 2012;287(32):27255–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kao TW, Bai GH, Wang TL, Shih IM, Chuang CM, Lo CL, et al. el cancer treatment paradigm targeting hypoxia-induced factor in conjunction with current therapies to overcome resistance. J Exp Clin Cancer Res. 2023;42(1):171.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma Z, Xiang X, Li S, Xie P, Gong Q, Goh BC, et al. Targeting hypoxia-inducible factor-1, for cancer treatment: Recent advances in developing small-molecule inhibitors from natural compounds. Semin Cancer Biol. 2022;80:379–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shirai Y, Chow CCT, Kambe G, Suwa T, Kobayashi M, Takahashi I, et al. An Overview of the Recent Development of Anticancer Agents Targeting the HIF-1 Transcription Factor. Cancers (Basel). 2021;13(11):2813.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link