Scientific Papers

Preconceptional paternal caloric restriction of high-fat diet-induced obesity in Wistar rats dysregulates the metabolism of their offspring via AMPK/SIRT1 pathway | Lipids in Health and Disease


  • Powell-Wiley TM, Poirier P, Burke LE, Després JP, Gordon-Larsen P, Lavie CJ, et al. Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation. 2021;143(21):e984–1010.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mn M, Smvk P, Battula KK, Nv G, Kalashikam RR. Differential response of rat strains to obesogenic diets underlines the importance of genetic makeup of an individual towards obesity. Sci Rep. 2017;7(1):9162.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flanagan EW, Most J, Mey JT, Redman LM. Calorie restriction and aging in humans. Annu Rev Nutr. 2020;40:105–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asghari S, Asghari-Jafarabadi M, Somi MH, Ghavami SM, Rafraf M. Comparison of calorie-restricted Diet and Resveratrol Supplementation on Anthropometric Indices, metabolic parameters, and serum Sirtuin-1 levels in patients with nonalcoholic fatty liver disease: a Randomized Controlled Clinical Trial. J Am Coll Nutr. 2018;37(3):223–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohen DE, Supinski AM, Bonkowski MS, Donmez G, Guarente LP. Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes Dev. 2009;23(24):2812–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X. SIRT1 and energy metabolism. Acta Biochim Biophys Sin (Shanghai). 2013;45(1):51–60.

    Article 
    PubMed 

    Google Scholar
     

  • Majeed Y, Halabi N, Madani AY, Engelke R, Bhagwat AM, Abdesselem H, et al. SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. Sci Rep. 2021;11(1):8177.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma L, Wang R, Wang H, Zhang Y, Zhao Z. Long-term caloric restriction activates the myocardial SIRT1/AMPK/PGC-1α pathway in C57BL/6J male mice. Food Nutr Res. 2020;64.

  • Rachakatla A, Kalashikam RR. Calorie restriction-regulated Molecular pathways and its impact on various age groups: an overview. DNA Cell Biol. 2022;41(5):459–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ross FA, Hawley SA, Russell FM, Goodman N, Hardie DG. Frequent loss-of-function mutations in the AMPK-α2 catalytic subunit suggest a tumour suppressor role in human skin cancers. Biochem J. 2023;480(23):1951–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiang L, Wang H, Farmer SR. Adiponectin secretion is regulated by SIRT1 and the endoplasmic reticulum oxidoreductase Ero1-L alpha. Mol Cell Biol. 2007;27(13):4698–707.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finegersh A, Homanics GE. Paternal alcohol exposure reduces alcohol drinking and increases behavioral sensitivity to alcohol selectively in male offspring. PLoS ONE. 2014;9(6):e99078.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dimofski P, Meyre D, Dreumont N, Leininger-Muller B. Consequences of Paternal Nutrition on Offspring Health and disease. Nutrients. 2021;13(8):2818.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Govic A, Penman J, Tammer AH, Paolini AG. Paternal calorie restriction prior to conception alters anxiety-like behavior of the adult rat progeny. Psychoneuroendocrinology. 2016;64:1–11.

    Article 
    PubMed 

    Google Scholar
     

  • Rando OJ, Simmons RA. I’m eating for two: parental dietary effects on offspring metabolism. Cell. 2015;161(1):93–105.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furse S, Watkins AJ, Hojat N, Smith J, Williams HEL, Chiarugi D, et al. Lipid Traffic Analysis reveals the impact of high paternal carbohydrate intake on offsprings’ lipid metabolism. Commun Biol. 2021;4(1):163–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng X, Li Z, Wang G, Wang H, Zhou Y, Zhao X, et al. Sperm epigenetic alterations contribute to inter- and transgenerational effects of paternal exposure to long-term psychological stress via evading offspring embryonic reprogramming. Cell Discov. 2021;7(1):101.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei S, Luo S, Zhang H, Li Y, Zhao J. Paternal high-fat diet altered SETD2 gene methylation in sperm of F0 and F1 mice. Genes Nutr. 2023;18(1):12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aizawa S, Tochihara A, Yamamuro Y. Paternal high-fat diet alters triglyceride metabolism-related gene expression in liver and white adipose tissue of male mouse offspring. Biochem Biophys Rep. 2022;31:101330.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo F, Smagris E, Martin SA, Vale G, McDonald JG, Fletcher JA, et al. Hepatic TM6SF2 is required for Lipidation of VLDL in a Pre-golgi Compartment in mice and rats. Cell Mol Gastroenterol Hepatol. 2022;13(3):879–99.

    Article 
    PubMed 

    Google Scholar
     

  • Luo F, Oldoni F, Das A. TM6SF2: a Novel Genetic Player in nonalcoholic fatty liver and Cardiovascular Disease. Hepatol Commun. 2022;6(3):448–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu HY, Cheng Y, Jin LY, Zhou Y, Pang HY, Zhu H, et al. Paternal obesity impairs hepatic gluconeogenesis of offspring by altering Igf2/H19 DNA methylation. Mol Cell Endocrinol. 2021;529:111264.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sertorio MN, César H, de Souza EA, Mennitti LV, Santamarin A, De Souza Mesquita LM, et al. Parental high-Fat High-Sugar Diet Intake Programming Inflammatory and Oxidative Parameters of Reproductive Health in male offspring. Front Cell Dev Biol. 2022;10:867127.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshida K, Maekawa T, Ly N, Fujita SI, Muratani M, Ando M, et al. ATF7-Dependent epigenetic changes are required for the intergenerational effect of a paternal Low-Protein Diet. Mol Cell. 2020;78(3):445–e4586.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • da Cruz RS, Carney EJ, Clarke J, Cao H, Cruz MI, Benitez C, et al. Paternal malnutrition programs breast cancer risk and tumor metabolism in offspring. Breast Cancer Res. 2018;20(1):99.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McPherson NO, Fullston T, Kang WX, Sandeman LY, Corbett MA, Owens JA, et al. Paternal under-nutrition programs metabolic syndrome in offspring which can be reversed by antioxidant/vitamin food fortification in fathers. Sci Rep. 2016;6:27010.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watkins AJ, Sinclair KD. Paternal low protein diet affects adult offspring cardiovascular and metabolic function in mice. Am J Physiol Heart Circ Physiol. 2014;306(10):H1444–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kondeti S, D M DY, Mn M, S M V K P, Nemani H, Kalashikam RR. Attenuation of FGF21 signalling might aggravate the impairment of glucose homeostasis during the high sucrose diet induced transition from prediabetes to diabetes in WNIN/GR-Ob rats. Biomed Pharmacother. 2021;137:111252.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reeves PG. Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr. 1997;127(5 Suppl):S838–41.

    Article 

    Google Scholar
     

  • Smvk P, M N M DM, DY, Kondeti S, Kalashikam RR. Strain specific variation underlines the disparity in stress response of rats to calorie dense diets in the pathophysiology of obesity. Steroids. 2020;160:108653.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai P, Luan S, Lu X, Luo K, Meng X, Cao B, et al. Genetic assessment of residual feed intake as a feed efficiency trait in the Pacific white shrimp Litopenaeus vannamei. Genet Sel Evol. 2017;49(1):61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernandez CD, Bellentani FF, Fernandes GS, Perobelli JE, Favareto AP, Nascimento AF, et al. Diet-induced obesity in rats leads to a decrease in sperm motility. Reprod Biol Endocrinol. 2011;9:32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novelli EL, Diniz YS, Galhardi CM, Ebaid GM, Rodrigues HG, Mani F, et al. Anthropometrical parameters and markers of obesity in rats. Lab Anim. 2007;41(1):111–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reaven GM. HOMA-beta in the UKPDS and ADOPT. Is the natural history of type 2 diabetes characterised by a progressive and inexorable loss of insulin secretory function? Maybe? Maybe not? Diab Vasc Dis Res. 2009;6(2):133–8.

    Article 
    PubMed 

    Google Scholar
     

  • Brankica K, Valentina VN, Slagjana SK, Sasha JM. Maternal 75-g OGTT glucose levels as predictive factors for large-for-gestational age newborns in women with gestational diabetes mellitus. Arch Endocrinol Metab. 2016;60(1):36–41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RILEY V. Adaptation of orbital bleeding technic to rapid serial blood studies. Proc Soc Exp Biol Med. 1960;104:751–4.

    Article 
    PubMed 

    Google Scholar
     

  • Matthews JN, Altman DG, Campbell MJ, Royston P. Analysis of serial measurements in medical research. BMJ. 1990;300(6719):230–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brunt EM, Kleiner DE, Wilson LA, Belt P, Neuschwander-Tetri BA, NASH Clinical Research Network (CRN). Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology. 2011;53(3):810–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–21.

    Article 
    PubMed 

    Google Scholar
     

  • Cao XW, Lin K, Li CY, Yuan CW. Zhonghua Nan Ke Xue. 2011;17(12):1059–63.

    PubMed 

    Google Scholar
     

  • Martins AD, Jarak I, Morais T, Carvalho RA, Oliveira PF, Monteiro MP, et al. Caloric restriction alters the hormonal profile and testicular metabolome, resulting in alterations of sperm head morphology. Am J Physiol Endocrinol Metab. 2020;318(1):E33–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rizzoto G, Sekhar D, Thundathil JC, Chelikani PK, Kastelic JP. Calorie restriction modulates Reproductive Development and Energy Balance in Pre-pubertal Male rats. Nutrients. 2019;11(9):1993.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu WW, Meng J, Cui J, Luan YS. Characterization and function of MicroRNAs in plants. Front Plant Sci. 2017;8:2200.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahangarpour A, Oroojan AA, Alboghobeish S, Khorsandi L, Moradi M. Toxic effects of Chronic exposure to High-Fat Diet and Arsenic on the Reproductive System of the male mouse. J Family Reprod Health. 2019;13(4):181–90.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Billah MM, Khatiwada S, Lecomte V, Morris MJ, Maloney CA. Ameliorating high-fat diet-induced sperm and testicular oxidative damage by micronutrient-based antioxidant intervention in rats. Eur J Nutr. 2022;61(7):3741–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deshpande SS, Nemani H, Arumugam G, Ravichandran A, Balasinor NH. High-fat diet-induced and genetically inherited obesity differentially alters DNA methylation profile in the germline of adult male rats. Clin Epigenetics. 2020;12(1):179.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang S, Zhang M, Sun S, Wei X, Chen Y, Zhou P, et al. Moderate calorie restriction ameliorates reproduction via attenuating oxidative stress-induced apoptosis through SIRT1 signaling in obese mice. Ann Transl Med. 2021;9(11):933.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maldonado M, Chen J, Duan H, Huang T, Jiang G, Zhong Y. High calorie diet background alters the expression of sirtuins in the testes of mice under caloric restriction. Translational Med Aging. 2021;5:10–6.

    Article 
    CAS 

    Google Scholar
     

  • Rosenfeld CS. Periconceptional influences on offspring sex ratio and placental responses. Reprod Fertil Dev. 2011;24(1):45–58.

    Article 
    PubMed 

    Google Scholar
     

  • Peng L, Yuan Z, Ling H, Fukasawa K, Robertson K, Olashaw N, et al. SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities. Mol Cell Biol. 2011;31(23):4720–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maugeri A, Barchitta M, Mazzone MG, Giuliano F, Basile G, Agodi A. Resveratrol modulates SIRT1 and DNMT functions and restores LINE-1 methylation levels in ARPE-19 cells under oxidative stress and inflammation. Int J Mol Sci. 2018;19(7):2118.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Binda O, Nassif C, Branton PE. SIRT1 negatively regulates HDAC1-dependent transcriptional repression by the RBP1 family of proteins. Oncogene. 2008;27(24):3384–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Devarajan A, Rajasekaran NS, Valburg C, Ganapathy E, Bindra S, Freije WA. Maternal perinatal calorie restriction temporally regulates the hepatic autophagy and redox status in male rat. Free Radic Biol Med. 2019;130:592–600.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palou M, Priego T, Sánchez J, Palou A, Picó C. Metabolic programming of sirtuin 1 (SIRT1) expression by moderate energy restriction during gestation in rats may be related to obesity susceptibility in later life. Br J Nutr. 2013;109(4):757–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lecomte V, Maloney CA, Wang KW, Morris MJ. Effects of paternal obesity on growth and adiposity of male rat offspring. Am J Physiol Endocrinol Metab. 2017;312(2):E117–25.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang J, Li HG, Fu L, Di FS. [Influence of high-fat diet in paternal C57BL/6 mice on liver fat deposition in offspring]. Zhonghua Gan Zang Bing Za Zhi. 2017;25(2):139–44.

    CAS 
    PubMed 

    Google Scholar
     

  • Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, et al. Leptin and obesity: role and clinical implication. Front Endocrinol (Lausanne). 2021;12:585887.

    Article 
    PubMed 

    Google Scholar
     

  • Morgan HL, Furse S, Dias IH, Shabir K, Castellanos M, Khan I, et al. Paternal low protein diet perturbs inter-generational metabolic homeostasis in a tissue-specific manner in mice. Commun Biol. 2022;5(1):929.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonçalves MD, Perez GD, Ferreira LD, Santos LS, Cordeiro GD, Couto RD, Medeiros JM. Paternal high-fat diet exposure induces adverse effects on offspring health: a systematic review of animal studies. Brazilian Archives Biology Technol. 2021;64:e21190123.

    Article 

    Google Scholar
     

  • Ornellas F, Souza-Mello V, Mandarim-de-Lacerda CA, Aguila MB. Programming of obesity and comorbidities in the progeny: lessons from a model of diet-induced obese parents. PLoS ONE. 2015;10(4):e0124737.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell. 2010;143(7):1084–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature. 2010;467(7318):963–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ng SF, Lin RC, Maloney CA, Youngson NA, Owens JA, Morris MJ. Paternal high-fat diet consumption induces common changes in the transcriptomes of retroperitoneal adipose and pancreatic islet tissues in female rat offspring. FASEB J. 2014;28(4):1830–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link