Scientific Papers

Improving the enzymatic activity and stability of N-carbamoyl hydrolase using deep learning approach | Microbial Cell Factories


  • Liu Y, Xie N, Yu B. De novo biosynthesis of D-p-hydroxyphenylglycine by a designed cofactor self-sufficient route and co-culture strategy. ACS Synth Biol. 2022;11:1361–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan X, Xu L, Li Y, Wu S, Wu Y, Wei W. Strategies to improve the biosynthesis of β-lactam antibiotics by penicillin G acylase: progress and prospects. Front Bioeng Biotechnol. 2022. https://doi.org/10.3389/fbioe.2022.936487.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al Toma RS, Brieke C, Cryle MJ, Süssmuth RD. Structural aspects of phenylglycines, their biosynthesis and occurrence in peptide natural products. Nat Prod Rep. 2015;32:1207–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen SY, Chien YW, Chao YP. In vivo immobilization of D-hydantoinase in Escherichia coli. J Biosci Bioeng. 2014;118:78–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J. Green chemistry in the synthesis of pharmaceuticals. Chem Rev. 2022;122:3637–710.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue Y-P, Cao C-H, Zheng Y-G. Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev. 2018;47:1516–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biocatalysis: enzymatic synthesis for industrial applications. Angew Chem Int Ed Engl. 2021;60:88–119.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan X, Zhang S, Song W, Liu J, Gao C, Chen X, Liu L, Wu J. A multi-enzyme cascade for efficient production of d-p-hydroxyphenylglycine from l-tyrosine. Bioresour Bioprocess. 2021;8:41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Zhu L, Qi W, Yu B. Biocatalytic production of D-p-hydroxyphenylglycine by optimizing protein expression and cell wall engineering in Escherichia coli. Appl Microbiol Biotechnol. 2019;103:8839–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Gao C, Song W, Wei W, Gao C, Chen X, Liu J, Liu L, Wu J. Improving D-carbamoylase thermostability through salt bridge engineering for efficient D-p-hydroxyphenylglycine production. Syst Microbiol Biomanufacturing. 2023;4(1):250–62.

    Article 

    Google Scholar
     

  • Martinez-Rodriguez S, Las Heras-Vazquez FJ, Clemente-Jimenez JM, Mingorance-Cazorla L, Rodriguez-Vico F. Complete conversion of D, L-5-monosubstituted hydantoins with a low velocity of chemical racemization into D-amino acids using whole cells of recombinant Escherichia coli. Biotechnol Prog. 2002;18:1201–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ikenaka Y, Nanba H, Yajima K, Yamada Y, Takano M, Takahashi S. Thermostability reinforcement through a combination of thermostability-related mutations of N-carbamyl-D-amino acid amidohydrolase. Biosci Biotechnol Biochem. 1999;63:91–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh K-H, Nam S-H, Kim H-S. Improvement of oxidative and thermostability of N-carbamyl-d-amino acid amidohydrolase by directed evolution. Protein Eng. 2002;15:689–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiu WC, You JY, Liu JS, Hsu SK, Hsu WH, Shih CH, Hwang JK, Wang WC. Structure-stability-activity relationship in covalently cross-linked N-carbamoyl D-amino acid amidohydrolase and N-acylamino acid racemase. J Mol Biol. 2006;359:741–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang S, Li C, Zhang W, Cai Y, Yang Y, Yang S, Jiang W. Directed evolution and structural analysis of N-carbamoyl-D-amino acid amidohydrolase provide insights into recombinant protein solubility in Escherichia coli. Biochem J. 2007;402:429–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang D, Zhu F, Fan W, Tao R, Yu H, Yang Y, Jiang W, Yang S. Gradually accumulating beneficial mutations to improve the thermostability of N-carbamoyl-D-amino acid amidohydrolase by step-wise evolution. Appl Microbiol Biotechnol. 2011;90:1361–71.

    Article 
    PubMed 

    Google Scholar
     

  • Gao X, Ma Q, Zhu H. Distribution, industrial applications, and enzymatic synthesis of D-amino acids. Appl Microbiol Biotechnol. 2015;99:3341–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Louwrier A, Knowles CJ. The purification and characterization of a novel D(−)-specific carbamoylase enzyme from an agrobacterium sp. Enzyme Microb Technol. 1996;19:562–71.

    Article 
    CAS 

    Google Scholar
     

  • Wu C, Yu X, Zheng P, Chen P, Wu D. Rational redesign of chitosanase to enhance thermostability and catalytic activity to produce chitooligosaccharides with a relatively high degree of polymerization. J Agric Food Chem. 2023;71:15213–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee SG, Lee DC, Hong SP, Sung MH, Kim HS. Thermostable d-hydantoinase from thermophilic Bacillus stearothermophilus SD-1: characteristics of purified enzyme. Appl Microbiol Biotechnol. 1995;43:270–6.

    Article 
    CAS 

    Google Scholar
     

  • Kim G-J, Kim H-S. Optimization of the enzymatic synthesis of d-p-hydroxyphenylglycine from dl-5-substituted hydantoin using d-hydantoinase and N-carbamoylase. Enzyme Microb Technol. 1995;17:63–7.

    Article 
    CAS 

    Google Scholar
     

  • Nakai T, Hasegawa T, Yamashita E, Yamamoto M, Kumasaka T, Ueki T, Nanba H, Ikenaka Y, Takahashi S, Sato M, Tsukihara T. Crystal structure of N-carbamyl-D-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases. Structure. 2000;8:729–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weinstein JY, Martí-Gómez C, Lipsh-Sokolik R, Hoch SY, Liebermann D, Nevo R, Weissman H, Petrovich-Kopitman E, Margulies D, Ivankov D, et al. Designed active-site library reveals thousands of functional GFP variants. Nat Commun. 2023;14:2890.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Domingo J, Baeza-Centurion P, Lehner B. The causes and consequences of genetic interactions (Epistasis). Annu Rev Genomics Hum Genet. 2019;20:433–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu S, Chu M, Zhang F, Zhao J, Zhang J, Cao Y, He G, Israr M, Zhao B, Ju J. Enhancement in the catalytic efficiency of D-amino acid oxidase from Glutamicibacter protophormiae by multiple amino acid substitutions. Enzyme Microb Technol. 2023;166:110224.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang L-W, Bahar I. Coupling between catalytic site and collective dynamics: a requirement for mechanochemical activity of enzymes. Structure. 2005;13(6):893–904.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang K, Yin X, Shi K, Zhang S, Wang J, Zhao S, Deng H, Zhang C, Wu Z, Li Y, et al. A high-efficiency method for site-directed mutagenesis of large plasmids based on large DNA fragment amplification and recombinational ligation. Sci Rep. 2021;11:10454.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sellés Vidal L, Isalan M, Heap JT, Ledesma-Amaro R. A primer to directed evolution: current methodologies and future directions. RSC Chem Biol. 2023;4:271–91.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh K-H, Nam S-H, Kim H-S. Improvement of oxidative and thermostability of N-Carbamyl-D-amino acid amidohydrolase by directed evolution. Protein Eng Des Sel. 2002;15:689–95.

    Article 
    CAS 

    Google Scholar
     

  • Nanba H, Yasohara Y, Hasegawa J, Takahashi S: Bioreactor systems for the production of optically active amino acids and alcohols. Org Process Res Dev. 2007;11(3):503–508.

  • Deng G, Li F, Yu H, Liu F, Liu C, Sun W, Jiang H, Chen Y. Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol-gel transitions. ACS Macro Lett. 2012;1:275–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hutchison CA, Phillips S, Edgell MH, Gillam S, Jahnke P, Smith M. Mutagenesis at a specific position in a DNA sequence. J Biol Chem. 1978;253:6551–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruff AJ, Dennig A, Schwaneberg U. To get what we aim for–progress in diversity generation methods. Febs J. 2013;280:2961–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen K, Arnold FH. Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc Natl Acad Sci. 1993;90:5618–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stemmer WPC. Rapid evolution of a protein in vitro by DNA shuffling. Nature. 1994;370:389–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leung DW, Chen E, Goeddel DV. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique. 1989;1:11–15. https://www.mendeley.com/catalogue/635b8d11-8d18-39f4-b6d4-7e8b69926ca7/


    Google Scholar
     

  • Hawkins RE, Russell SJ, Winter G. Selection of phage antibodies by binding affinity. Mimicking affinity maturation. J Mol Biol. 1992;226:889–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qu G, Zhu T, Jiang Y, Wu B, Sun Z. Protein engineering: from directed evolution to computational design. Sheng Wu Gong Cheng Xue Bao. 2019;35:1843–56.

    CAS 
    PubMed 

    Google Scholar
     

  • Cheng F, Zhu L, Schwaneberg U. Directed evolution 2.0: improving and deciphering enzyme properties. Chem Commun (Camb). 2015;51:9760–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lutz S. Beyond directed evolution—semi-rational protein engineering and design. Curr Opin Biotechnol. 2010;21:734–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chica RA, Doucet N, Pelletier JN. Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design. Curr Opin Biotechnol. 2005;16:378–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang B, Fan T, Wang K, Zhang H, Yu C, Nie S, Qi Y, Zheng W-M, Han J, Fan Z, et al. Accurate and efficient protein sequence design through learning concise local environment of residues. Bioinformatics. 2023. https://doi.org/10.1093/bioinformatics/btad122

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang B, Xu Y, Hu X, Liu Y, Liao S, Zhang J, Huang C, Hong J, Chen Q, Liu H. A backbone-centred energy function of neural networks for protein design. Nature. 2022;602:523–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karas C, Hecht M. A strategy for combinatorial cavity design in de novo proteins. Life. 2020;10:9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li F, Yuan L, Lu H, Li G, Chen Y, Engqvist MKM, Kerkhoven EJ, Nielsen J. Deep learning-based kcat prediction enables improved enzyme-constrained model reconstruction. Nat Catal. 2022;5:662–72.

    Article 
    CAS 

    Google Scholar
     

  • Schomburg I, Jeske L, Ulbrich M, Placzek S, Chang A, Schomburg D. The BRENDA enzyme information system—from a database to an expert system. J Biotechnol. 2017;261:194–206.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wittig U, Rey M, Weidemann A, Kania R, Müller W. SABIO-RK: an updated resource for manually curated biochemical reaction kinetics. Nucleic Acids Res. 2017;46:D656–60.

    Article 
    PubMed Central 

    Google Scholar
     

  • Kroll A, Rousset Y, Hu X-P, Liebrand NA, Lercher MJ. Turnover number predictions for kinetically uncharacterized enzymes using machine and deep learning. Nat Commun. 2023;14:4139.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Velan GM, Jones P, McNeil HP, Kumar RK. Integrated online formative assessments in the biomedical sciences for medical students: benefits for learning. BMC Med Educ. 2008;8:52.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Golding RM, Breen LJ, Krause AE, Allen PJ. The summer undergraduate research experience as a work-integrated learning opportunity and potential pathway to publication in psychology. Front Psychol. 2019. https://doi.org/10.3389/fpsyg.2019.00541

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou N, Jiang Y, Bergquist TR, Lee AJ, Kacsoh BZ, Crocker AW, Lewis KA, Georghiou G, Nguyen HN, Hamid MN, et al. The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. Genome Biol. 2019;20:244.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link