Scientific Papers

Enhanced osteochondral repair by leukocyte-depleted platelet-rich plasma in combination with adipose-derived mesenchymal stromal cells encapsulated in a three-dimensional photocrosslinked injectable hydrogel in a rabbit model | Stem Cell Research & Therapy


  • McCormick F, Harris JD, Abrams GD, Frank R, Gupta A, Hussey K, et al. Trends in the surgical treatment of articular cartilage lesions in the United States: an analysis of a large private-payer database over a period of 8 years. Arthroscopy. 2014;30:222–6.

    Article 
    PubMed 

    Google Scholar
     

  • McAdams TR, Mithoefer K, Scopp JM, Mandelbaum BR. Articular cartilage Injury in athletes. Cartilage. 2010;1:165–79.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Volz M, Schaumburger J, Frick H, Grifka J, Anders S. A randomized controlled trial demonstrating sustained benefit of Autologous Matrix-Induced Chondrogenesis over microfracture at five years. Int Orthop. 2017;41:797–804.

    Article 
    PubMed 

    Google Scholar
     

  • Karami P, Stampoultzis T, Guo Y, Pioletti DP. A guide to preclinical evaluation of hydrogel-based devices for treatment of cartilage lesions. Acta Biomater. 2023;158:12–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baroli B. Hydrogels for tissue engineering and delivery of tissue-inducing substances. J Pharm Sci. 2007;96:2197–223.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He C, Clark KL, Tan J, Zhou H, Tuan RS, Lin H, et al. Modeling early changes associated with cartilage trauma using human-cell-laden hydrogel cartilage models. Stem Cell Res Ther. 2022;13:400.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balakrishnan B, Banerjee R. Biopolymer-based hydrogels for cartilage tissue engineering. Chem Rev. 2011;111:4453–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elisseeff J. Injectable cartilage tissue engineering. Expert Opin Biol Ther. 2004;4:1849–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Orth P, Madry H. Complex and elementary histological scoring systems for articular cartilage repair. Histol Histopathol. 2015;30:911–9.

    PubMed 

    Google Scholar
     

  • Rothrauff BB, Coluccino L, Gottardi R, Ceseracciu L, Scaglione S, Goldoni L, et al. Efficacy of thermoresponsive, photocrosslinkable hydrogels derived from decellularized tendon and cartilage extracellular matrix for cartilage tissue engineering. J Tissue Eng Regen Med. 2018;12:e159–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin H, Cheng AW, Alexander PG, Beck AM, Tuan RS. Cartilage tissue engineering application of injectable gelatin hydrogel with in situ visible-light-activated gelation capability in both air and aqueous solution. Tissue Eng Part A. 2014;20:2402–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slimi F, Zribi W, Trigui M, Amri R, Gouiaa N, Abid C, et al. The effectiveness of platelet-rich plasma gel on full-thickness cartilage defect repair in a rabbit model. Bone Joint Res. 2021;10:192–202.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie X, Wang Y, Zhao C, Guo S, Liu S, Jia W, et al. Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials. 2012;33:7008–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Z, Yin W, Zhang Y, Qi X, Chen Y, Xie X, et al. Comparative evaluation of leukocyte- and platelet-rich plasma and pure platelet-rich plasma for cartilage regeneration. Sci Rep. 2017;7:43301.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liou JJ, Rothrauff BB, Alexander PG, Tuan RS. Effect of platelet-rich plasma on chondrogenic differentiation of adipose- and bone marrow-derived mesenchymal stem cells. Tissue Eng Part A. 2018;24:1432–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chapman HS, Gale AL, Dodson ME, Linardi RL, Ortved KF. Autologous platelet lysate does not enhance chondrogenic differentiation of equine bone marrow-derived mesenchymal stromal cells despite increased TGF-beta1 concentration. Stem Cells Dev. 2020;29:144–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amable PR, Carias RB, Teixeira MV, da Cruz Pacheco I, Correa do Amaral RJ, Granjeiro JM, et al. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem Cell Res Ther. 2013;4:67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan X, Yuan S, Xun X, Fan Z, Xue X, Zhang C, et al. Long-term recruitment of endogenous M2 macrophages by platelet lysate-rich plasma Macroporous Hydrogel Scaffold for articular cartilage defect repair. Adv Healthc Mater. 2022;11:e2101661.

    Article 
    PubMed 

    Google Scholar
     

  • Beigi MH, Atefi A, Ghanaei HR, Labbaf S, Ejeian F, Nasr-Esfahani MH. Activated platelet-rich plasma improves cartilage regeneration using adipose stem cells encapsulated in a 3D alginate scaffold. J Tissue Eng Regen Med. 2018;12:1327–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011;9:11–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maumus M, Guerit D, Toupet K, Jorgensen C, Noel D. Mesenchymal stem cell-based therapies in regenerative medicine: applications in rheumatology. Stem Cell Res Ther. 2011;2:14.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calori GM, Colombo M, Mazza EL, Mazzola S, Malagoli E, Mineo GV. Incidence of donor site morbidity following harvesting from iliac crest or RIA graft. Injury. 2014;45(Suppl 6):S116–20.

    Article 
    PubMed 

    Google Scholar
     

  • Li M, Luo X, Lv X, Liu V, Zhao G, Zhang X, et al. In vivo human adipose-derived mesenchymal stem cell tracking after intra-articular delivery in a rat osteoarthritis model. Stem Cell Res Ther. 2016;7:160.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu YK, Sheu SY, Wang CY, Chuang MH, Chung PC, Luo YS, et al. The effect of adipose-derived mesenchymal stem cells and chondrocytes with platelet-rich fibrin releasates augmentation by intra-articular injection on acute osteochondral defects in a rabbit model. Knee. 2018;25:1181–91.

    Article 
    PubMed 

    Google Scholar
     

  • Spakova T, Amrichova J, Plsikova J, Harvanova D, Hornak S, Ledecky V, et al. A preliminary Study comparing microfracture and local adherent transplantation of autologous adipose-derived stem cells followed by Intraarticular Injection of Platelet-Rich Plasma for the treatment of Chondral defects in rabbits. Cartilage. 2018;9:410–6.

    Article 
    PubMed 

    Google Scholar
     

  • Van Pham P, Bui KH, Ngo DQ, Vu NB, Truong NH, Phan NL, et al. Activated platelet-rich plasma improves adipose-derived stem cell transplantation efficiency in injured articular cartilage. Stem Cell Res Ther. 2013;4:91.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fairbanks BD, Schwartz MP, Bowman CN, Anseth KS. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials. 2009;30:6702–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jansson E, Lindahl A. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res. 2000:212–34.

  • Smith GD, Taylor J, Almqvist KF, Erggelet C, Knutsen G, Garcia Portabella M, et al. Arthroscopic assessment of cartilage repair: a validation study of 2 scoring systems. Arthroscopy. 2005;21:1462–7.

    Article 
    PubMed 

    Google Scholar
     

  • Hayes WC, Keer LM, Herrmann G, Mockros LF. A mathematical analysis for indentation tests of articular cartilage. J Biomech. 1972;5:541–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoch DH, Grodzinsky AJ, Koob TJ, Albert ML, Eyre DR. Early changes in material properties of rabbit articular cartilage after meniscectomy. J Orthop Res. 1983;1:4–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delaine-Smith RM, Burney S, Balkwill FR, Knight MM. Experimental validation of a flat punch indentation methodology calibrated against unconfined compression tests for determination of soft tissue biomechanics. J Mech Behav Biomed Mater. 2016;60:401–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schinagl RM, Gurskis D, Chen AC, Sah RL. Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J Orthop Res. 1997;15:499–506.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim A, Protsenko DE, Wong BJ. Changes in the tangent modulus of rabbit septal and auricular cartilage following electromechanical reshaping. J Biomech Eng. 2011;133:094502.

    Article 
    PubMed 

    Google Scholar
     

  • Freeman TA, Patel P, Parvizi J, Antoci V Jr., Shapiro IM. Micro-CT analysis with multiple thresholds allows detection of bone formation and resorption during ultrasound-treated fracture healing. J Orthop Res. 2009;27:673–9.

    Article 
    PubMed 

    Google Scholar
     

  • Voor MJ, Yang S, Burden RL, Waddell SW. In vivo micro-CT scanning of a rabbit distal femur: repeatability and reproducibility. J Biomech. 2008;41:186–93.

    Article 
    PubMed 

    Google Scholar
     

  • Maruyama M, Satake H, Suzuki T, Honma R, Naganuma Y, Takakubo Y, et al. Comparison of the effects of Osteochondral Autograft Transplantation with platelet-rich plasma or platelet-rich fibrin on Osteochondral defects in a rabbit model. Am J Sports Med. 2017;45:3280–8.

    Article 
    PubMed 

    Google Scholar
     

  • Niederauer GG, Slivka MA, Leatherbury NC, Korvick DL, Harroff HH, Ehler WC, et al. Evaluation of multiphase implants for repair of focal osteochondral defects in goats. Biomaterials. 2000;21:2561–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sasaki H, Rothrauff BB, Alexander PG, Lin H, Gottardi R, Fu FH, et al. In Vitro Repair of Meniscal Radial tear with hydrogels seeded with adipose stem cells and TGF-beta3. Am J Sports Med. 2018;46:2402–13.

    Article 
    PubMed 

    Google Scholar
     

  • Park H, Choi B, Hu J, Lee M. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater. 2013;9:4779–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi B, Kim S, Lin B, Wu BM, Lee M. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. ACS Appl Mater Interfaces. 2014;6:20110–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cabral J, Moratti SC. Hydrogels for biomedical applications. Future Med Chem. 2011;3:1877–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pascual-Garrido C, Aisenbrey EA, Rodriguez-Fontan F, Payne KA, Bryant SJ, Goodrich LR. Photopolymerizable Injectable Cartilage Mimetic Hydrogel for the treatment of focal chondral lesions: a proof of Concept Study in a rabbit animal model. Am J Sports Med. 2019;47:212–21.

    Article 
    PubMed 

    Google Scholar
     

  • Qi C, Liu J, Jin Y, Xu L, Wang G, Wang Z, et al. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage. Biomaterials. 2018;163:89–104.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie X, Zhang C, Tuan RS. Biology of platelet-rich plasma and its clinical application in cartilage repair. Arthritis Res Ther. 2014;16:204.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nie LY, Zhao K, Ruan J, Xue J. Effectiveness of Platelet-Rich Plasma in the treatment of knee osteoarthritis: a Meta-analysis of Randomized Controlled clinical trials. Orthop J Sports Med. 2021;9:2325967120973284.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rikkers M, Dijkstra K, Terhaard BF, Admiraal J, Levato R, Malda J, et al. Platelet-Rich plasma does not inhibit inflammation or promote regeneration in human osteoarthritic chondrocytes in Vitro despite increased proliferation. Cartilage. 2021;13:S991–1003.

    Article 

    Google Scholar
     

  • Kato Y, Yanada S, Morikawa H, Okada T, Watanabe M, Takeuchi S. Effect of platelet-rich plasma on autologous chondrocyte implantation for Chondral defects: results using an in vivo rabbit model. Orthop J Sports Med. 2022;10:23259671221079349.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang K, Li J, Li Z, Wang B, Qin Y, Zhang N, et al. Chondrogenic progenitor cells exhibit Superiority over mesenchymal stem cells and chondrocytes in platelet-rich plasma Scaffold-based cartilage regeneration. Am J Sports Med. 2019;47:2200–15.

    Article 
    PubMed 

    Google Scholar
     

  • Nia HT, Han L, Li Y, Ortiz C, Grodzinsky A. Poroelasticity of cartilage at the nanoscale. Biophys J. 2011;101:2304–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wahlquist JA, DelRio FW, Randolph MA, Aziz AH, Heveran CM, Bryant SJ, et al. Indentation mapping revealed poroelastic, but not viscoelastic, properties spanning native zonal articular cartilage. Acta Biomater. 2017;64:41–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin YY, Hu BW. Load relaxation of a flat rigid circular indenter on a gel half space. J Non-cryst Solids. 2006;352:4034–40.

    Article 
    CAS 

    Google Scholar
     

  • Potter N, Westbrock F, Grad S, Alini M, Stoddart MJ, Schmal H, et al. Evaluation of the influence of platelet-rich plasma (PRP), platelet lysate (PL) and mechanical loading on chondrogenesis in vitro. Sci Rep. 2021;11:20188.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iseki T, Rothrauff BB, Kihara S, Sasaki H, Yoshiya S, Fu FH, et al. Dynamic compressive loading improves cartilage repair in an in vitro model of microfracture: comparison of 2 mechanical loading regimens on simulated microfracture based on Fibrin Gel scaffolds encapsulating connective tissue progenitor cells. Am J Sports Med. 2019;47:2188–99.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buxton AN, Bahney CS, Yoo JU, Johnstone B. Temporal exposure to chondrogenic factors modulates human mesenchymal stem cell chondrogenesis in hydrogels. Tissue Eng Part A. 2011;17:371–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link