Scientific Papers

Knockout mice with pituitary malformations help identify human cases of hypopituitarism | Genome Medicine


  • Vishnopolska SA, Mercogliano MF, Camilletti MA, Mortensen AH, Braslavsky D, Keselman A, et al. Comprehensive identification of pathogenic gene variants in patients with neuroendocrine disorders. J Clin Endocrinol Metab. 2021;106(7):1956–76.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang Q, George AS, Brinkmeier ML, Mortensen AH, Gergics P, Cheung LY, et al. Genetics of combined pituitary hormone deficiency: roadmap into the genome era. Endocr Rev. 2016;37(6):636–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dusatkova P, Pfäffle R, Brown MR, Akulevich N, Arnhold IJ, Kalina MA, et al. Genesis of two most prevalent PROP1 gene variants causing combined pituitary hormone deficiency in 21 populations. Eur J Human Genet: EJHG. 2016;24(3):415–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gregory LC, Cionna C, Cerbone M, Dattani MT. Identification of genetic variants and phenotypic characterization of a large cohort of patients with congenital hypopituitarism and related disorders. Genet Med. 2023;25(9):100881.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blum WF, Klammt J, Amselem S, Pfäffle HM, Legendre M, Sobrier ML, et al. Screening a large pediatric cohort with GH deficiency for mutations in genes regulating pituitary development and GH secretion: Frequencies, phenotypes and growth outcomes. EBioMedicine. 2018;36:390–400.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bando H, Urai S, Kanie K, Sasaki Y, Yamamoto M, Fukuoka H, et al. Novel genes and variants associated with congenital pituitary hormone deficiency in the era of next-generation sequencing. Front Endocrinol (Lausanne). 2022;13:1008306.

    Article 
    PubMed 

    Google Scholar
     

  • Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Rienzo F, Mellone S, Bellone S, Babu D, Fusco I, Prodam F, et al. Frequency of genetic defects in combined pituitary hormone deficiency: a systematic review and analysis of a multicentre Italian cohort. Clin Endocrinol (Oxf). 2015;83(6):849–60.

    Article 
    PubMed 

    Google Scholar
     

  • Jullien N, Saveanu A, Vergier J, Marquant E, Quentien MH, Castinetti F, et al. Clinical lessons learned in constitutional hypopituitarism from two decades of experience in a large international cohort. Clin Endocrinol (Oxf). 2021;94(2):277–89.

    Article 
    PubMed 

    Google Scholar
     

  • Gregory LC, Dattani MT. The Molecular Basis of Congenital Hypopituitarism and Related Disorders. J Clin Endocrinol Metab. 2020;105(6).

  • Rizzoti K, Lovell-Badge R. Early development of the pituitary gland: induction and shaping of Rathke’s pouch. Rev Endocr Metab Disord. 2005;6(3):161–72.

    Article 
    PubMed 

    Google Scholar
     

  • Carreno G, Apps JR, Lodge EJ, Panousopoulos L, Haston S, Gonzalez-Meljem JM, et al. Hypothalamic sonic hedgehog is required for cell specification and proliferation of LHX3/LHX4 pituitary embryonic precursors. Development. 2017;144(18):3289–302.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fauquier T, Rizzoti K, Dattani M, Lovell-Badge R, Robinson IC. SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc Natl Acad Sci U S A. 2008;105(8):2907–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwind JL. The development of the hypophysis cerebri of the albino rat. Am J Anatom. 1928;41(2):295–319.

    Article 

    Google Scholar
     

  • Garcia-Lavandeira M, Quereda V, Flores I, Saez C, Diaz-Rodriguez E, Japon MA, et al. A GRFa2/Prop1/stem (GPS) cell niche in the pituitary. PLoS ONE. 2009;4(3):e4815.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheung LY, Davis SW, Brinkmeier ML, Camper SA, Perez-Millan MI. Regulation of pituitary stem cells by epithelial to mesenchymal transition events and signaling pathways. Mol Cell Endocrinol. 2016.

  • Mohun T, Adams DJ, Baldock R, Bhattacharya S, Copp AJ, Hemberger M, et al. Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice. Dis Model Mech. 2013;6(3):562–6.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson R, McGuire C, Mohun T. Deciphering the mechanisms of developmental disorders: phenotype analysis of embryos from mutant mouse lines. Nucleic Acids Res. 2016;44(D1):D855–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brinkmeier ML, Potok MA, Davis SW, Camper SA. TCF4 deficiency expands ventral diencephalon signaling and increases induction of pituitary progenitors. Dev Biol. 2007;311(2):396–407.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Visel A, Thaller C, Eichele G. GenePaint.org: an atlas of gene expression patterns in the mouse embryo. Nucleic Acids Res. 2004;32(Database issue):D552-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, et al. A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol. 2011;9(1):e1000582.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eichele G, Diez-Roux G. High-throughput analysis of gene expression on tissue sections by in situ hybridization. Methods. 2011;53(4):417–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin HJ, Ebert D, et al. The Gene Ontology knowledgebase in 2023. Genetics. 2023;224(1).

  • UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023;51(D1):D523-d31.

  • Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hogan B, Beddington R, Costantini F, Lacey E. Manipulating the mouse embryo: a laboratory manual. New York: Cold Spring Harbor Laboratory Press; 1994.


    Google Scholar
     

  • Martinez-Mayer J BM, O’Connell SP, Ukagwu A, Marti MA, Miras M, Forclaz MV, Benzrihen MG, Cheung LY, Camper SA, Ellsworth BS, Raetzman LT, Pérez Millán MI, Davis SW. Knockout mice with pituitary malformations help identify human cases of hypopituitarism. GSE246211, NCBI Gene Expression Ominbus. 2023. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE246211

  • Martinez-Mayer J BM OCS, Ukagwu A, Marti MA, Miras M, Forclaz MV, Benzrihen MG, Cheung LY, Camper SA, Ellsworth BS, Raetzman LT, Pérez Millán MI, Davis SW. e12.5 pituitary gland from a retinoic acid reporter mouse (RARE-LacZ JAX strain #008477). GSM786906, NCBI Gene Expression Omnibus. 2023. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM7864906

  • Martinez-Mayer J BM OCS, Ukagwu A, Marti MA, Miras M, Forclaz MV, Benzrihen MG, Cheung LY, Camper SA, Ellsworth BS, Raetzman LT, Pérez Millán MI, Davis SW. Two pooled e14.5 pituitary glands from C57BL6 strain. GMS7864907, NCBI Gene Expression Omnibus. 2023. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM7864907

  • Gergics P, Smith C, Bando H, Jorge AAL, Rockstroh-Lippold D, Vishnopolska SA, et al. High-throughput splicing assays identify missense and silent splice-disruptive POU1F1 variants underlying pituitary hormone deficiency. Am J Hum Genet. 2021;108(8):1526–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez-Mayer J, Vishnopolska S, Perticarari C, Garcia LI, Hackbartt M, Martinez M, et al. Exome Sequencing has a high diagnostic rate in sporadic congenital hypopituitarism and reveals novel candidate genes. J Clin Endocrinol Metab. 2024.

  • Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinform. 2013;43:1101–33.


    Google Scholar
     

  • Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Current protocols in human genetics. 2013;Chapter 7:Unit7.20.

  • Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176(3):535-48.e24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayadi A, Birling MC, Bottomley J, Bussell J, Fuchs H, Fray M, et al. Mouse large-scale phenotyping initiatives: overview of the European Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics Project. Mamm Genome. 2012;23(9–10):600–10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25(9):1189–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Douse CH, Bloor S, Liu Y, Shamin M, Tchasovnikarova IA, Timms RT, et al. Neuropathic MORC2 mutations perturb GHKL ATPase dimerization dynamics and epigenetic silencing by multiple structural mechanisms. Nat Commun. 2018;9(1):651.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Webb B, Sali A. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinform. 2016;54:5.6.1-5.6.37.

    Article 

    Google Scholar
     

  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14(1):33–8 (27-8).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brinkmeier ML, Potok MA, Cha KB, Gridley T, Stifani S, Meeldijk J, et al. TCF and Groucho-related genes influence pituitary growth and development. Mol Endocrinol. 2003;17(11):2152–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson R, Geyer SH, Reissig L, Rose J, Szumska D, Hardman E, et al. Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice. Wellcome Open Res. 2016;1:1.

    Article 
    PubMed 

    Google Scholar
     

  • Ho EK, Stearns T. Hedgehog signaling and the primary cilium: implications for spatial and temporal constraints on signaling. Development. 2021;148(9).

  • Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer. 2013;13(8):572–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts C, Sutherland HF, Farmer H, Kimber W, Halford S, Carey A, et al. Targeted mutagenesis of the Hira gene results in gastrulation defects and patterning abnormalities of mesoendodermal derivatives prior to early embryonic lethality. Mol Cell Biol. 2002;22(7):2318–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McClatchey AI. ERM proteins at a glance. J Cell Sci. 2014;127(Pt 15):3199–204.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albulym OM, Kennerson ML, Harms MB, Drew AP, Siddell AH, Auer-Grumbach M, et al. MORC2 mutations cause axonal Charcot-Marie-Tooth disease with pyramidal signs. Ann Neurol. 2016;79(3):419–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang N, Chen Y, Lu H, Zhao F, Alvarez RV, Goncearenco A, et al. MutaBind2: Predicting the impacts of single and multiple mutations on protein-protein interactions. iScience. 2020;23(3):100939.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deciphering Developmental Disorders S. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542(7642):433–8.

    Article 

    Google Scholar
     

  • Klee EW, Cousin MA, Pinto EVF, Morales-Rosado JA, Macke EL, Jenkinson WG, et al. Impact of integrated translational research on clinical exome sequencing. Genet Med. 2021;23(3):498–507.

    Article 
    PubMed 

    Google Scholar
     

  • Klee EW, Cousin MA, Pinto EVF, Morales-Rosado JA, Macke EL, Jenkinson WG, et al. Impact of integrated translational research on clinical exome sequencing. Genet Med. 2023;25(2):100359.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuechler A, Zink AM, Wieland T, Lüdecke HJ, Cremer K, Salviati L, et al. Loss-of-function variants of SETD5 cause intellectual disability and the core phenotype of microdeletion 3p25.3 syndrome. Eur J Human Genet: EJHG. 2015;23(6):753–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grozeva D, Carss K, Spasic-Boskovic O, Parker MJ, Archer H, Firth HV, et al. De novo loss-of-function mutations in SETD5, encoding a methyltransferase in a 3p25 microdeletion syndrome critical region, cause intellectual disability. Am J Hum Genet. 2014;94(4):618–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Powis Z, Farwell Hagman KD, Mroske C, McWalter K, Cohen JS, Colombo R, et al. Expansion and further delineation of the SETD5 phenotype leading to global developmental delay, variable dysmorphic features, and reduced penetrance. Clin Genet. 2018;93(4):752–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Collins FS, Rossant J, Wurst W. A mouse for all reasons. Cell. 2007;128(1):9–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rizzoti K. Adult pituitary progenitors/stem cells: from in vitro characterization to in vivo function. Eur J Neurosci. 2010;32(12):2053–62.

    Article 
    PubMed 

    Google Scholar
     

  • Cheung L, Le Tissier P, Goldsmith SG, Treier M, Lovell-Badge R, Rizzoti K. NOTCH activity differentially affects alternative cell fate acquisition and maintenance. eLife. 2018;7.

  • Guillen Sacoto MJ, Tchasovnikarova IA, Torti E, Forster C, Andrew EH, Anselm I, et al. De novo variants in the ATPase module of MORC2 cause a neurodevelopmental disorder with growth retardation and variable craniofacial dysmorphism. Am J Hum Genet. 2020;107(2):352–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacquier A, Roubille S, Lomonte P, Schaeffer L. Microrchidia CW-Type Zinc Finger 2, a chromatin modifier in a spectrum of peripheral neuropathies. Front Cell Neurosci. 2022;16:896854.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tétreault M, Choquet K, Orcesi S, Tonduti D, Balottin U, Teichmann M, et al. Recessive mutations in POLR3B, encoding the second largest subunit of Pol III, cause a rare hypomyelinating leukodystrophy. Am J Hum Genet. 2011;89(5):652–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernard G, Vanderver A. POLR3-Related Leukodystrophy. In: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, et al., editors. GeneReviews(®). Seattle (WA): University of Washington, Seattle

  • Copyright © 1993–2023, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.; 1993.

  • Sessa A, Fagnocchi L, Mastrototaro G, Massimino L, Zaghi M, Indrigo M, et al. SETD5 regulates chromatin methylation state and preserves global transcriptional fidelity during brain development and neuronal wiring. Neuron. 2019;104(2):271-89.e13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baker K, Beales PL. Making sense of cilia in disease: the human ciliopathies. Am J Med Genet C Semin Med Genet. 2009;151c(4):281–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wheway G, Nazlamova L, Hancock JT. Signaling through the primary cilium. Front Cell Dev Biol. 2018;6:8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andreu-Cervera A, Catala M, Schneider-Maunoury S. Cilia, ciliopathies and hedgehog-related forebrain developmental disorders. Neurobiol Dis. 2021;150:105236.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Voutetakis A. Pituitary stalk interruption syndrome. Handb Clin Neurol. 2021;181:9–27.

    Article 
    PubMed 

    Google Scholar
     

  • Lodge EJ, Barrell WB, Liu KJ, Andoniadou CL. The Fuzzy planar cell polarity protein (FUZ), necessary for primary cilium formation, is essential for pituitary development. J Anat. 2024;244(2):358–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zwaveling-Soonawala N, Alders M, Jongejan A, Kovacic L, Duijkers FA, Maas SM, et al. Clues for polygenic inheritance of pituitary stalk interruption syndrome from exome sequencing in 20 patients. J Clin Endocrinol Metab. 2018;103(2):415–28.

    Article 
    PubMed 

    Google Scholar
     

  • Wolf MT, Saunier S, O’Toole JF, Wanner N, Groshong T, Attanasio M, et al. Mutational analysis of the RPGRIP1L gene in patients with Joubert syndrome and nephronophthisis. Kidney Int. 2007;72(12):1520–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barnes BG. Ciliated secretory cells in the pars distalis of the mouse hypophysis. J Ultrastruct Res. 1961;5:453–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Correr S, Motta PM. The rat pituitary cleft: a correlated study by scanning and transmission electron microscopy. Cell Tissue Res. 1981;215(3):515–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iwanaga T, Hozumi Y, Takahashi-Iwanaga H. Immunohistochemical demonstration of dopamine receptor D2R in the primary cilia of the mouse pituitary gland. Biomed Res. 2011;32(3):225–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iwanaga T, Miki T, Takahashi-Iwanaga H. Restricted expression of somatostatin receptor 3 to primary cilia in the pancreatic islets and adenohypophysis of mice. Biomed Res. 2011;32(1):73–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • França MM, Jorge AA, Carvalho LR, Costalonga EF, Vasques GA, Leite CC, et al. Novel heterozygous nonsense GLI2 mutations in patients with hypopituitarism and ectopic posterior pituitary lobe without holoprosencephaly. J Clin Endocrinol Metab. 2010;95(11):E384–91.

    Article 
    PubMed 

    Google Scholar
     

  • Kure S, Kato K, Dinopoulos A, Gail C, DeGrauw TJ, Christodoulou J, et al. Comprehensive mutation analysis of GLDC, AMT, and GCSH in nonketotic hyperglycinemia. Hum Mutat. 2006;27(4):343–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ducker GS, Rabinowitz JD. One-Carbon Metabolism in Health and Disease. Cell Metab. 2017;25(1):27–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Groza T, Gomez FL, Mashhadi HH, Muñoz-Fuentes V, Gunes O, Wilson R, et al. The International Mouse Phenotyping Consortium: comprehensive knockout phenotyping underpinning the study of human disease. Nucleic Acids Res. 2022.

  • Leung KY, Pai YJ, Chen Q, Santos C, Calvani E, Sudiwala S, et al. Partitioning of one-carbon units in folate and methionine metabolism is essential for neural tube closure. Cell Rep. 2017;21(7):1795–808.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bjelobaba I, Janjic MM, Stojilkovic SS. Purinergic signaling pathways in endocrine system. Auton Neurosci. 2015;191:102–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayala-Peña VB, Scolaro LA, Santillán GE. ATP and UTP stimulate bone morphogenetic protein-2,-4 and -5 gene expression and mineralization by rat primary osteoblasts involving PI3K/AKT pathway. Exp Cell Res. 2013;319(13):2028–36.

    Article 
    PubMed 

    Google Scholar
     

  • Jia C, Cussen AR, Hegg CC. ATP differentially upregulates fibroblast growth factor 2 and transforming growth factor α in neonatal and adult mice: effect on neuroproliferation. Neuroscience. 2011;177:335–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yatsuzuka A, Hori A, Kadoya M, Matsuo-Takasaki M, Kondo T, Sasai N. GPR17 is an essential regulator for the temporal adaptation of sonic hedgehog signalling in neural tube development. Development. 2019;146(17).

  • Davis SW, Ellsworth BS, Perez Millan MI, Gergics P, Schade V, Foyouzi N, et al. Pituitary gland development and disease: from stem cell to hormone production. Curr Top Dev Biol. 2013;106:1–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooper S, Grijzenhout A, Underwood E, Ancelin K, Zhang T, Nesterova TB, et al. Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat Commun. 2016;7:13661.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verberne EA, Goh S, England J, van Ginkel M, Rafael-Croes L, Maas S, et al. JARID2 haploinsufficiency is associated with a clinically distinct neurodevelopmental syndrome. Genet Med. 2021;23(2):374–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takeuchi T, Yamazaki Y, Katoh-Fukui Y, Tsuchiya R, Kondo S, Motoyama J, et al. Gene trap capture of a novel mouse gene, jumonji, required for neural tube formation. Genes Dev. 1995;9(10):1211–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Southall SM, Cronin NB, Wilson JR. A novel route to product specificity in the Suv4-20 family of histone H4K20 methyltransferases. Nucleic Acids Res. 2014;42(1):661–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515(7526):216–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schotta G, Sengupta R, Kubicek S, Malin S, Kauer M, Callén E, et al. A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes Dev. 2008;22(15):2048–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan Z, Cui K, Murray DM, Ling C, Xue Y, Gerstein A, et al. PBAF chromatin-remodeling complex requires a novel specificity subunit, BAF200, to regulate expression of selective interferon-responsive genes. Genes Dev. 2005;19(14):1662–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shang L, Cho MT, Retterer K, Folk L, Humberson J, Rohena L, et al. Mutations in ARID2 are associated with intellectual disabilities. Neurogenetics. 2015;16(4):307–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bramswig NC, Caluseriu O, Lüdecke HJ, Bolduc FV, Noel NC, Wieland T, et al. Heterozygosity for ARID2 loss-of-function mutations in individuals with a Coffin-Siris syndrome-like phenotype. Hum Genet. 2017;136(3):297–305.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He L, Tian X, Zhang H, Hu T, Huang X, Zhang L, et al. BAF200 is required for heart morphogenesis and coronary artery development. PLoS ONE. 2014;9(10):e109493.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guelman S, Kozuka K, Mao Y, Pham V, Solloway MJ, Wang J, et al. The double-histone-acetyltransferase complex ATAC is essential for mammalian development. Mol Cell Biol. 2009;29(5):1176–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tchasovnikarova IA, Timms RT, Douse CH, Roberts RC, Dougan G, Kingston RE, et al. Hyperactivation of HUSH complex function by Charcot-Marie-Tooth disease mutation in MORC2. Nat Genet. 2017;49(7):1035–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tchasovnikarova IA, Timms RT, Matheson NJ, Wals K, Antrobus R, Göttgens B, et al. GENE SILENCING. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells. Science. 2015;348(6242):1481–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hagelkruys A, Horrer M, Taubenschmid-Stowers J, Kavirayani A, Novatchkova M, Orthofer M, et al. The HUSH complex controls brain architecture and protocadherin fidelity. Sci Adv. 2022;8(44):eabo7247.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cha KB, Douglas KR, Potok MA, Liang H, Jones SN, Camper SA. WNT5A signaling affects pituitary gland shape. Mech Dev. 2004;121(2):183–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petryk A, Graf D, Marcucio R. Holoprosencephaly: signaling interactions between the brain and the face, the environment and the genes, and the phenotypic variability in animal models and humans. Wiley Interdiscip Rev Dev Biol. 2015;4(1):17–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bosch IAL, Katugampola H, Dattani MT. Congenital hypopituitarism during the neonatal period: epidemiology, pathogenesis, therapeutic options, and outcome. Front Pediatr. 2020;8:600962.

    Article 

    Google Scholar
     

  • Reis LM, Seese S, Maheshwari M, Basel D, Weik L, McCarrier J, et al. Novel genetic diagnoses in septo-optic dysplasia. Genes (Basel). 2022;13(7).

  • Czyz W, Morahan JM, Ebers GC, Ramagopalan SV. Genetic, environmental and stochastic factors in monozygotic twin discordance with a focus on epigenetic differences. BMC Med. 2012;10:93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link