Scientific Papers

Emergence of extensive drug resistance and high prevalence of multidrug resistance among clinical Proteus mirabilis isolates in Egypt | Annals of Clinical Microbiology and Antimicrobials


  • Armbruster CE, Mobley HLT, Pearson MM. Pathogenesis of Proteus mirabilis infection. EcoSal Plus. 2018;8(1).

  • Aghapour Z, Gholizadeh P, Ganbarov K, Bialvaei AZ, Mahmood SS, Tanomand A, et al. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect drug Resist. 2019;12:965–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirzaei A, Nasr Esfahani B, Raz A, Ghanadian M, Moghim S. From the Urinary Catheter to the Prevalence of Three Classes of Integrons, β-Lactamase Genes, and Differences in Antimicrobial Susceptibility of Proteus mirabilis and Clonal Relatedness with Rep-PCR. BioMed research international. 2021;2021.

  • Girlich D, Bonnin RA, Dortet L, Naas T. Genetics of Acquired Antibiotic Resistance genes in Proteus spp. Front Microbiol. 2020;11.

  • Benmahmod AB, Said HS, Ibrahim RH. Prevalence and mechanisms of carbapenem resistance among Acinetobacter baumannii clinical isolates in Egypt. Microb Drug Resist. 2019;25(4):480–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanches MS, Silva LC, Silva CRD, Montini VH, Oliva BHD, Guidone GHM et al. Prevalence of Antimicrobial Resistance and Clonal Relationship in ESBL/AmpC-Producing Proteus mirabilis isolated from Meat products and Community-acquired urinary tract infection (UTI-CA) in Southern Brazil. Antibiotics 2023;12(2).

  • Danilo de Oliveira W, Lopes Barboza MG, Faustino G, Yamanaka Inagaki WT, Sanches MS, Takayama Kobayashi RK et al. Virulence, resistance and clonality of Proteus mirabilis isolated from patients with community-acquired urinary tract infection (CA-UTI) in Brazil. Microb Pathog. 2021;152.

  • Saiprasad PV, Krishnaprasad K. Exploring the hidden potential of fosfomycin for the fight against severe Gram-negative infections. Ind J Med Microbiol. 2016;34(4):416–20.

    Article 
    CAS 

    Google Scholar
     

  • Salama LA, Saleh H, Abdel-Rhman S, Barwa R, Hassan R. Phenotypic and genotypic characterization of Extended Spectrum β-lactamases producing Proteus mirabilis isolates. J Records Pharm Biomedical Sci. 2021;5:89–99.

    Article 

    Google Scholar
     

  • Shaaban M, Elshaer SL, Abd El-Rahman OA. Prevalence of extended-spectrum β-lactamases, AmpC, and carbapenemases in Proteus mirabilis clinical isolates. BMC Microbiol. 2022;22(1).

  • Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev. 2018;31(4).

  • Algammal AM, Hashem HR, Alfifi KJ, Hetta HF, Sheraba NS, Ramadan H et al. atpD gene sequencing, multidrug resistance traits, virulence-determinants, and antimicrobial resistance genes of emerging XDR and MDR-Proteus mirabilis. Sci Rep. 2021;11(1).

  • Leboffe MJ, Pierce BE. A photographic atlas for the Microbiology Laboratory. 4th ed: Morton Publishing Company; 2011.

  • Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4):493–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • CLSI. Performance standards for Antimicrobial susceptibility Testing.CLSI supplement M100. 31th ed. Wayne, United States: Clinical and Laboratory Standards Institute (CLSI); 2021.


    Google Scholar
     

  • Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infection: Official Publication Eur Soc Clin Microbiol Infect Dis. 2012;18(3):268–81.

    Article 
    CAS 

    Google Scholar
     

  • Winn WC, Koneman EW. Koneman’s color atlas and textbook of diagnostic microbiology. 6th ed. Philadelphia: Lippincott Williams and Wilkins; 2006.


    Google Scholar
     

  • Pal N, Hooja S, Sharma R, Maheshwari RK. Phenotypic detection and Antibiogram of β-lactamase-producing Proteus species in a Tertiary Care Hospital, India. Annals Med Health Sci Res. 2016;6(5):267–73.

    Article 
    CAS 

    Google Scholar
     

  • Lee K, Kim CK, Yong D, Jeong SH, Yum JH, Seo YH, et al. Improved performance of the modified Hodge test with MacConkey agar for screening carbapenemase-producing Gram-negative bacilli. J Microbiol Methods. 2010;83(2):149–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amjad A, Mirza I, Abbasi S, Farwa U, Malik N, Zia F. Modified Hodge test: a simple and effective test for detection of carbapenemase production. Iran J Microbiol. 2011;3(4):189–93.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panchal CA, Oza SS, Mehta SJ. Comparison of four phenotypic methods for detection of metallo-β-lactamase-producing Gram-negative bacteria in rural teaching hospital. J Lab Physicians. 2017;9(2):81–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Said HS, Benmahmod AB, Ibrahim RH. Co-production of AmpC and extended spectrum beta-lactamases in cephalosporin-resistant Acinetobacter baumannii in Egypt. World J Microbiol Biotechnol. 2018;34(12).

  • Pathirana H, De Silva BCJ, Wimalasena S, Hossain S, Heo GJ. Comparison of virulence genes in Proteus species isolated from human and pet turtle. Iran J Veterinary Res. 2018;19(1):48–52.

    CAS 

    Google Scholar
     

  • Gharrah MM, Mostafa El-Mahdy A, Barwa RF. Association between virulence factors and extended Spectrum Beta-Lactamase producing Klebsiella pneumoniae compared to Nonproducing isolates. Interdiscip Perspect Infect Dis. 2017;2017:7279830.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pagani L, Dell’Amico E, Migliavacca R, D’Andrea MM, Giacobone E, Amicosante G, et al. Multiple CTX-M-type extended-spectrum beta-lactamases in nosocomial isolates of Enterobacteriaceae from a hospital in northern Italy. J Clin Microbiol. 2003;41(9):4264–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dallenne C, Da Costa A, Decré D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother. 2010;65(3):490–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barwa R, Abdelmegeed E, Abd El Galil K. Occurrence and detection of AmpC β-lactamases among some clinical isolates of Enterobacteriaceae obtained from Mansoura University Hospitals, Egypt. Afr J Microbiol Res. 2012;6(41):6924–30.

    Article 

    Google Scholar
     

  • Khalil MAF, Elgaml A, El-Mowafy M. Emergence of Multidrug-Resistant New Delhi Metallo-β-Lactamase-1-Producing Klebsiella pneumoniae in Egypt. Microb drug Resist (Larchmont NY). 2017;23(4):480–7.

    Article 
    CAS 

    Google Scholar
     

  • Barwa R, Shaaban M. Molecular characterization of Klebsiella pneumoniae clinical isolates with elevated resistance to Carbapenems. open Microbiol J. 2017;11:152–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70(1):119–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother. 2007;60(2):394–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cattoir V, Weill FX, Poirel L, Fabre L, Soussy CJ, Nordmann P. Prevalence of qnr genes in Salmonella in France. J Antimicrob Chemother. 2007;59(4):751–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang M, Guo Q, Xu X, Wang X, Ye X, Wu S, et al. New plasmid-mediated quinolone resistance gene, qnrC, found in a clinical isolate of Proteus mirabilis. Antimicrob Agents Chemother. 2009;53(5):1892–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cattoir V, Poirel L, Nordmann P. Plasmid-mediated quinolone resistance pump QepA2 in an Escherichia coli isolate from France. Antimicrob Agents Chemother. 2008;52(10):3801–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, Zhang W, Pan W, Yin J, Pan Z, Gao S, et al. Prevalence of qnr, aac(6’)-Ib-cr, qepA, and oqxAB in Escherichia coli isolates from humans, animals, and the environment. Antimicrob Agents Chemother. 2012;56(6):3423–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC. Prevalence in the United States of aac(6’)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrobial agents and chemotherapy. 2006;50(11):3953-5.

  • Machado E, Cantón R, Baquero F, Galán JC, Rollán A, Peixe L, et al. Integron content of extended-spectrum-beta-lactamase-producing Escherichia coli strains over 12 years in a single hospital in Madrid, Spain. Antimicrob Agents Chemother. 2005;49(5):1823–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei Q, Jiang X, Li M, Li G, Hu Q, Lu H, et al. Diversity of gene cassette promoter variants of class 1 integrons in uropathogenic Escherichia coli. J Curr Microbiol. 2013;67:543–9.

    Article 
    CAS 

    Google Scholar
     

  • Versalovic J, Koeuth T, Lupski R. Distribution of repetitive DNA sequences in eubacteria and application to finerpriting of bacterial enomes. Nucleic Acids Res. 1991;19(24):6823–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michelim L, Muller G, Zacaria J, Delamare AP, Costa SO, Echeverrigaray S. Comparison of PCR-based molecular markers for the characterization of Proteus mirabilis clinical isolates. Brazilian J Infect Diseases: Official Publication Brazilian Soc Infect Dis. 2008;12(5):423–9.

    Article 
    CAS 

    Google Scholar
     

  • Heras J, Dominguez C, Mata E, Pascual V, Lozano C, Torres C, et al. GelJ–a tool for analyzing DNA fingerprint gel images. BMC Bioinformatics. 2015;16:270.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol. 1988;26(11):2465–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aladarose BE, Said HS, Abdelmegeed ES. Incidence of virulence determinants among Enterococcal Clinical isolates in Egypt and its Association with Biofilm formation. Microbial drug resistance (Larchmont, NY). 2019;25(6):880–9.

  • El-Baz R, Said HS, Abdelmegeed ES, Barwa R. Characterization of virulence determinants and phylogenetic background of multiple and extensively drug resistant Escherichia coli isolated from different clinical sources in Egypt. Appl Microbiol Biotechnol. 2022;106(3):1279–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Said HS, Abdelmegeed ES. Emergence of multidrug resistance and extensive drug resistance among enterococcal clinical isolates in Egypt. Infect drug Resist. 2019;12:1113–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abreu AG, Marques SG, Monteiro-Neto V, Carvalho RM, Gonçalves AG. Nosocomial infection and characterization of extended-spectrum β-lactamases-producing Enterobacteriaceae in Northeast Brazil. Rev Soc Bras Med Trop. 2011;44(4):441–6.

    Article 
    PubMed 

    Google Scholar
     

  • Datta P, Gupta V, Arora S, Garg S, Chander J. Epidemiology of extended-spectrum β-lactamase, AmpC, and carbapenemase production in Proteus mirabilis. Jpn J Infect Dis. 2014;67(1):44–6.

    Article 
    PubMed 

    Google Scholar
     

  • Feglo P, Opoku S. AmpC beta-lactamase production among Pseudomonas aeruginosa and Proteus mirabilis isolates at the Komfo Anokye Teaching Hospital, Kumasi, Ghana. J Microbiol. 2014;6(1):13–20.

    CAS 

    Google Scholar
     

  • Rudresh SM, Nagarathnamma T. Extended spectrum β-lactamase producing Enterobacteriaceae & antibiotic co-resistance. Indian J Med Res. 2011;133(1):116–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pavez M, Troncoso C, Osses I, Salazar R, Illesca V, Reydet P, et al. High prevalence of CTX-M-1 group in ESBL-producing enterobacteriaceae infection in intensive care units in southern Chile. Brazilian J Infect Diseases: Official Publication Brazilian Soc Infect Dis. 2019;23(2):102–10.

    Article 

    Google Scholar
     

  • Chen CM, Lai CH, Wu HJ, Wu LT. Genetic characteristic of class 1 integrons in proteus mirabilis isolates from urine samples. BioMedicine. 2017;7(2):12–7.

    Article 

    Google Scholar
     

  • Alabi OS, Mendonça N, Adeleke OE, da Silva GJ. Molecular screening of antibiotic-resistant determinants among multidrug-resistant clinical isolates of Proteus mirabilis from SouthWest Nigeria. Afr Health Sci. 2017;17(2):356–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tonkić M, Mohar B, Šiško-Kraljević K, Meško-Meglič K, Goić-Barišić I, Novak A, et al. High prevalence and molecular characterization of extended-spectrum β-lactamase-producing Proteus mirabilis strains in southern Croatia. J Med Microbiol. 2010;59(10):1185–90.

    Article 
    PubMed 

    Google Scholar
     

  • Bedenić B, Firis N, Elveđi-Gašparović V, Krilanović M, Matanović K, Štimac I, et al. Emergence of multidrug-resistant Proteus mirabilis in a long-term care facility in Croatia. Wiener Klinische Wochenschrift. 2016;128(11–12):404–13.

    Article 
    PubMed 

    Google Scholar
     

  • Kurihara Y, Hitomi S, Oishi T, Kondo T, Ebihara T, Funayama Y, et al. Characteristics of bacteremia caused by extended-spectrum beta-lactamase-producing Proteus mirabilis. J Infect Chemotherapy: Official J Japan Soc Chemother. 2013;19(5):799–805.

    Article 
    CAS 

    Google Scholar
     

  • Mohamudha Parveen R, Harish BN, Parija SC. Ampc Beta lactamases among gram negative clinical isolates from a tertiary hospital, South India. Brazilian J Microbiology: [publication Brazilian Soc Microbiology]. 2010;41(3):596–602.

    Article 
    CAS 

    Google Scholar
     

  • Helmy MM, Wasfi R. Phenotypic and molecular characterization of plasmid mediated AmpC β-lactamases among Escherichia coli, Klebsiella spp, and Proteus mirabilis isolated from urinary tract infections in Egyptian hospitals. BioMed research international. 2014;2014.

  • Joji RM, Al-Mahameed AE, Jishi TA, Fatani DI, Saeed NK, Jaradat A, et al. Molecular detection of plasmid-derived AmpC β-lactamase among clinical strains of Enterobacteriaceae in Bahrain. Annals Thorac Med. 2021;16(3):287–93.

    Article 
    CAS 

    Google Scholar
     

  • Tan TY, Ng LS, He J, Koh TH, Hsu LY. Evaluation of screening methods to detect plasmid-mediated AmpC in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Antimicrob Agents Chemother. 2009;53(1):146–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendes RE, Castanheira M, Woosley LN, Stone GG, Bradford PA, Flamm RK. Characterization of β-Lactamase content of Ceftazidime-resistant pathogens recovered during the Pathogen-Directed phase 3 REPRISE trial for Ceftazidime-Avibactam: correlation of efficacy against β-Lactamase producers. Antimicrob Agents Chemother. 2019;63(6).

  • Halat DH, Moubareck CA. The current Burden of carbapenemases: review of significant properties and dissemination among Gram-negative Bacteria. Antibiotics. 2020;9(4).

  • Ohno Y, Nakamura A, Hashimoto E, Matsutani H, Abe N, Fukuda S, et al. Molecular epidemiology of carbapenemase-producing Enterobacteriaceae in a primary care hospital in Japan, 2010–2013. J Infect Chemotherapy: Official J Japan Soc Chemother. 2017;23(4):224–9.

    Article 

    Google Scholar
     

  • Naas T, Cuzon G, Villegas MV, Lartigue MF, Quinn JP, Nordmann P. Genetic structures at the origin of acquisition of the beta-lactamase blaKPC gene. Antimicrob Agents Chemother. 2008;52(4):1257–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guillard T, Grillon A, de Champs C, Cartier C, Madoux J, Berçot B et al. Mobile insertion cassette elements found in small non-transmissible plasmids in Proteeae may explain qnrD mobilization. PLoS ONE. 2014;9(2).

  • Karageorgopoulos DE, Wang R, Yu XH, Falagas ME. Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in Gram-negative pathogens. J Antimicrob Chemother. 2012;67(2):255–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sokhn ES, Salami A, El Roz A, Salloum L, Bahmad HF, Ghssein G. Antimicrobial susceptibilities and Laboratory profiles of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates as agents of urinary tract infection in Lebanon: paving the way for Better Diagnostics. Med Sci 2020;8(3).

  • Gomaa S, Serry F, Abdellatif H, Abbas H. Elimination of multidrug-resistant Proteus mirabilis biofilms using bacteriophages. Arch Virol. 2019;164(9):2265–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shilpakar A, Ansari M, Rai KR, Rai G, Rai SK. Prevalence of multidrug-resistant and extended-spectrum beta-lactamase producing Gram-negative isolates from clinical samples in a tertiary care hospital of Nepal. Trop Med Health. 2021;49(1).

  • Fursova NK, Astashkin EI, Knyazeva AI, Kartsev NN, Leonova ES, Ershova ON, et al. The spread of Bla OXA-48 and bla OXA-244 carbapenemase genes among Klebsiella pneumoniae, Proteus mirabilis and Enterobacter spp. isolated in Moscow, Russia. Ann Clin Microbiol Antimicrob. 2015;14:46–55.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei Q, Hu Q, Li S, Lu H, Chen G, Shen B, et al. A novel functional class 2 integron in clinical Proteus mirabilis isolates. J Antimicrob Chemother. 2014;69(4):973–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mokracka J, Gruszczyńska B, Kaznowski A. Integrons, β-lactamase and qnr genes in multidrug resistant clinical isolates of Proteus mirabilis and P. Vulgaris. APMIS: Acta Pathologica Microbiol et Immunol Scand. 2012;120(12):950–8.

    Article 
    CAS 

    Google Scholar
     

  • Yekani M, Memar MY, Baghi HB, Sefidan FY, Alizadeh N, Ghotaslou R. Association of integrons with multidrug-resistant isolates among phylogenic groups of uropathogenic Escherichia coli. J Microbiol Res. 2018;9(1).



  • Source link