Scientific Papers

Conversion of boreal forests to agricultural systems: soil microbial responses along a land-conversion chronosequence | Environmental Microbiome


  • Bush E, Lemmen DS, editors. Canada’s changing climate report. Ottawa: Government of Canada; 2019. p. 444.


    Google Scholar
     

  • King M, Altdorff D, Li P, Glagedara L, Holden J, Unc A. Northward shift of the agricultural climate zone under 21st-century global climate change. Sci Rep. 2018;8:7904.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Unc A, Altdorff D, Abakumov E, Adl S, Baldursson S, Bechtold M, et al. Expansion of agriculture in northern cold-climate regions: a cross-sectoral perspective on opportunities and challenges. Front Sustain Food Syst. 2021;5:663448.

    Article 

    Google Scholar
     

  • Altdorff D, Borchard N, Young EH, Galagedara L, Sorvali J, Quideau S, et al. Agriculture in boreal and Arctic regions requires an integrated global approach for research and policy. Agron Sustain Dev. 2021;41:23.

    Article 

    Google Scholar
     

  • DeGryze S, Six J, Paustian K, Morris SJ, Paul EA, Merckx R. Soil organic carbon pool changes following land-use conversions. Glob Change Biol. 2004;10:1120–32.

    Article 

    Google Scholar
     

  • Ellert B, Gregorich EG. Storage of carbon, nitrogen and phosphorus in cultivated and adjacent forest soils of Ontario. Soil Sci. 1996;161:587–603.

    Article 
    CAS 

    Google Scholar
     

  • Reicosky D. Managing soil health for sustainable agriculture volume 1: fundamentals. 1st ed. Burleigh Dodds Science Publishing; 2018.

  • Benalcazar P, Diochon A, Kolka R, Schindelbeck R, Sahota T, McLaren BE. The impact of land conversion from boreal forest to agriculture on soil health indicators. Can J Soil Sci. 2022;87:403–15.


    Google Scholar
     

  • Peplau T, Schroeder J, Gregorich E, Poeplau C. Subarctic soil carbon losses after deforestation for agriculture depend on permafrost abundance. Glob Change Biol. 2022;28:5227–42.

    Article 
    CAS 

    Google Scholar
     

  • Schroeder J, Peplau T, Pennekamp F, Gregorich E, Tebbe CC, Poeplau C. Deforestation for agriculture increases microbial carbon use efficiency in subarctic soils. Biol Fertil Soils. 2024;60:17–34.

    Article 
    CAS 

    Google Scholar
     

  • Tardy V, Spor A, Mathieu O, Lévèque J, Terrat S, Plassart P, et al. Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil. Soil Biol Biochem. 2015;90:204–13.

    Article 
    CAS 

    Google Scholar
     

  • Mäkipää R, Abramoff R, Adamczyk B, Baldy V, Biryol C, Bosela M, et al. How does management affect soil C sequestration and greenhouse gas fluxes in boreal and temperate forests? – a review. Ecol Manag. 2023;529:120637.

    Article 

    Google Scholar
     

  • de Graaff M-A, Hornslein N, Throop HL, Kardol P, van Diepen LTA. Effects of agricultural intensification on soil biodiversity and implications for ecosystem functioning: a meta-analysis. Adv Agron. 2019;155:1–44.

    Article 

    Google Scholar
     

  • Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giguère-Tremblay R, Laperriere G, de Grandpré A, Morneault A, Bisson D, Chagnon P-L, et al. Boreal forest multifunctionality is promoted by low soil organic matter content and high regional bacterial biodiversity in Northeastern Canada. Forests. 2020;11:149.

    Article 

    Google Scholar
     

  • Zhou Z, Wang C, Luo Y. Effects of forest degradation on microbial communities and soil carbon cycling: a global meta-analysis. Glob Ecol Biogeogr. 2018;27:110–24.

    Article 

    Google Scholar
     

  • Bauhus J, Pare D, Côté L. Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biol Biochem. 1998;30:1077–89.

    Article 
    CAS 

    Google Scholar
     

  • Merloti LF, Mendes LW, Pedrinho A, de Souza LF, Ferrari BM, Tsai SM. Forest-to-agriculture conversion in Amazon drives soil microbial communities and N-cycle. Soil Biol Biochem. 2019;137:107567.

    Article 
    CAS 

    Google Scholar
     

  • Pankhurst CE, Doube BM. Biological indicators of soil health: synthesis. In: Pankhurst CE, Doube BM, Gupta VVSR, editors. Biological indicators of soil health. Oxon: CABI International; 1997. pp. 419–35.


    Google Scholar
     

  • Bevivino A, Paganin P, Bacci G, Florio A, Pellicer MS, Papaleo MC, et al. Soil bacterial community response to differences in agricultural management along with seasonal changes in a Mediterranean region. PLoS ONE. 2014;9:e105515.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peltoniemi K, Velmala S, Fritze H, Lemola R, Pennanen T. Long-term impacts of organic and conventional farming on the soil microbiome in boreal arable soil. Eur J Soil Biol. 2021;104:103314.

    Article 
    CAS 

    Google Scholar
     

  • Morugán-Coronado A, Pérez-Rodríguez P, Insolia E, Soto-Gómez D, Fernández-Calviño D, Zornoza R. The impact of crop diversification, tillage and fertilization type on soil total microbial, fungal and bacterial abundance: a worldwide meta-analysis of agricultural sites. Agric Ecosyst Environ. 2022;329:107867.

    Article 

    Google Scholar
     

  • Hicks LC, Rousk K, Rinnan R, Rousk J. Soil microbial responses to 28 years of nutrient fertilization in a subarctic heath. Ecosystems. 2020;23:1107–19.

    Article 
    CAS 

    Google Scholar
     

  • Neurauter M, Yuan M, Hicks LC, Rousk J. Soil microbial resource limitation along a subarctic ecotone from birch forest to tundra heath. Soil Biol Biochem. 2023;177:108919.

    Article 
    CAS 

    Google Scholar
     

  • Allison SD, Czimczik CI, Treseder KK. Microbial activity and soil respiration under nitrogen addition in alaskan boreal forest. Glob Change Biol. 2008;14:1156–168.

    Article 

    Google Scholar
     

  • Kibblewhite MG, Ritz K, Swift MJ. Soil health in agricultural systems. Philos Trans R Soc. 2008;363:685–701.

    Article 
    CAS 

    Google Scholar
     

  • Lladó S, López-Mondéjar R, Baldrian P. Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev. 2017;81:e00063–16.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shade A, Peter H, Allison S, Baho D, Berga M, Buergmann H, et al. Fundamentals of microbial community resistance and resilience. Front Microbiol. 2012;3:417.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burnett MS, Schütte UME, Harms TK. Widespread capacity for denitrification across a boreal forest landscape. Biogeochemistry. 2022;158:215–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seitz TJ, Schütte UME, Drown DM. Unearthing shifts in microbial communities across a disturbance gradient. Front Microbiol. 2022;13:781051.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Truu M, Nõlvak H, Ostonen I, Oopkaup K, Maddison M, Ligi T, et al. Soil bacterial and archaeal communities and their potential to perform n-cycling processes in soils of boreal forests growing on well-drained peat. Front Microbiol. 2020;11:591358.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paavolainen L, Smolander A. Nitrification and denitrification in soil from a clear-cut Norway spruce (Picea abies) stand. Soil Biol Biochem. 1998;30:775–81.

    Article 
    CAS 

    Google Scholar
     

  • Paavolainen L, Kitunen V, Smolander A. Inhibition of nitrification in forest soil by monoterpenes. Plant Soil. 1998;205:147–54.

    Article 
    CAS 

    Google Scholar
     

  • Li J, Delgado-Baquerizo M, Wang J-T, Hu H-W, Cai Z-J, Zhu Y-N, et al. Fungal richness contributes to multifunctionality in boreal forest soil. Soil Biol Biochem. 2019;136:107526.

    Article 
    CAS 

    Google Scholar
     

  • Mollard DG, Mollard JD. Thunder Bay Area (NTS 52A/SW), District of Thunder Bay. In: Northern Ontario Engineering Geology Terrain Study 71. Ontario Geological Survey. 1983. http://www.geologyontario.mndmf.gov.on.ca/mndmfiles/pub/data/imaging/NOEGTS071TS071.pdf. Accessed 10 Nov 2023.

  • Wester MC, Henson BL, Crins WJ, Uhlig PWC, Gray PA. The ecosystems of Ontario, Part 2: Ecodistricts. Ontario Ministry of Natural Resources and Forestry, Science and Research Branch, Peterborough, ON. Science and Research Technical Report- TR-26. 2018.

  • Edge TA, Baird DJ, Bilodeau G, Gagné N, Greer C, Konkin D, et al. The Ecobiomics project: advancing metagenomics assessment of soil health and freshwater quality in Canada. Sci Total Environ. 2020;710:135906. https://www.ontario.ca/page/ecosystems-ontario-part-2-ecodistricts. Accessed 10 Nov 2023.

  • Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.

  • Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ. Removing noise from pyrosequenced amplicons. BMC Bioinform. 2011;12:38.

    Article 

    Google Scholar
     

  • Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, et al. New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol. 2012;82:666–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • White TJ, Bruns TD, Lee SB, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York: Academic; 1990. pp. 315–22.


    Google Scholar
     

  • Pérez-Guzmán L, Phillips LA, Seuradge BJ, Agomoh I, Drury CF, Acosta‐Martínez V. An evaluation of biological soil health indicators in four long‐term continuous agroecosystems in Canada. Agric Ecosyst Environ. 2021;4:e20164.


    Google Scholar
     

  • R Core Team. R: A language and environment for statistical computing R. Foundation for Statistical Computing, Vienna, Austria. 2020. https://www.r-project.org/.

  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trivedi P, Delgado-Baquerizo M, Anderson IC, Singh BK. Response of soil properties and microbial communities to agriculture: implications for primary productivity and soil health indicators. Front Plant Sci. 2016;7:990.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGuire KL, Allison SD, Fierer N, Treseder KK. Ectomycorrhizal-dominated boreal and tropical forests have distinct fungal communities, but analogous spatial patterns across soil horizons. PLoS ONE. 2013;8:e68278.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Termorshuizen AJ. Ecology of fungal plant pathogens. In: Heitman J, Howlet BJ, Crous PW, Stukenbrock EH, James TY, Gow NAR, editors. The fungal kingdom. ASM; 2017. pp. 387–97.

  • Reid C, Watmough SA. Evaluating the effects of liming and wood-ash treatment on forest ecosystems through systematic meta-analysis. Can J Res. 2014;44:867–85.

    Article 
    CAS 

    Google Scholar
     

  • Megyes M, Borsodi AK, Árendás T, Márialigeti K. Variations in the diversity of soil bacterial and archaeal communities in response to different long-term fertilization regimes in maize fields. Appl Soil Ecol. 2021;168:104120.

    Article 

    Google Scholar
     

  • Mujakić I, Piwosz K, Koblížek M. Phylum Gemmatimonadota and its role in the environment. Microorganisms. 2022;10:151.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep. 2016;6:25279.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Insberghe D, Maas KR, Cardenas E, Strachan CR, Hallam SJ, Mohn WW. Non-symbiotic Bradyrhizobium ecotypes dominate north American forest soils. ISME J. 2015;9:2435–41.

    Article 

    Google Scholar
     

  • Bölscher T, Wadsö L, Börjesson G, Herrmann AM. Differences in substrate use efficiency: impacts of microbial community composition, land use management, and substrate complexity. Biol Fertil Soils. 2016;52:547–59.

    Article 

    Google Scholar
     

  • Cherubini F, Ulgiati S. Crop residues as raw materials for biorefinery systems–A LCA case study. Appl Energy. 2010;87:47–57.

    Article 
    CAS 

    Google Scholar
     

  • Ginni G, Kavitha S, Kannah Y, Bhatia SK, Kumar A, Rajkumar M, et al. Valorization of agricultural residues: different biorefinery routes. J Environ Chem Eng. 2021;9:105435.

    Article 

    Google Scholar
     

  • Attard E, Poly F, Commeaux C, Laurent F, Terada A, Smets BF, et al. Shifts between Nitrospira- and Nitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices. Environ Microbiol. 2010;12:315–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banning NC, Maccarone LD, Fisk LM, Murphy DV. Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil. Sci Rep. 2015;5:11146.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang F, Wen Y, Dong X, Wang Y, Pan G, Jiang F, et al. Response of activity and community composition of nitrite-oxidizing bacteria to partial substitution of chemical fertilizer by organic fertilizer. Environ Sci Pollut Res. 2021;28:29332–43.

    Article 
    CAS 

    Google Scholar
     

  • Gubry-Rangin C, Kratsch C, Williams TA, McHardy AC, Embley TM, Prosser JI, et al. Coupling of diversification and pH adaptation during the evolution of terrestrial Thaumarchaeota. PNAS. 2015;112:9370–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tatti E, Goyer C, Chantigny M, Wertz S, Zebarth BJ, Burton DL, Filion M. Influences of over winter conditions on denitrification and nitrous oxide-producing microorganism abundance and structure in an agricultural soil amended with different nitrogen sources. Agric Ecosyst Environ. 2014;183:47–59.

    Article 
    CAS 

    Google Scholar
     

  • Fraser TD, Lynch DH, Gaiero J, Khosla K, Dunfield KE. Quantification of bacterial non-specific acid (phoC) and alkaline (phoD) phosphatase genes in bulk and rhizosphere soil from organically managed soybean fields. Appl Soil Ecol. 2017;111:48–56.

    Article 

    Google Scholar
     

  • Lang M, Zou W, Chen X, Zou C, Zhang W, Deng Y, et al. Soil microbial composition and phoD gene abundance are sensitive to phosphorus level in a long-term wheat-maize crop system. Front Microbiol. 2021;11:605955.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ragot SA, Kertesz MA, Bünemann EK. PhoD alkaline phosphatase gene diversity in soil. Appl Environ Microbiol. 2015;81:7281–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo X, Hou E, Zhang L, Kuan Y, Wen D. Altered soil microbial properties and functions after afforestation increase soil carbon and nitrogen but not phosphorus accumulation. Biol Fertil Soils. 2023. https://doi.org/10.1007/s00374-023-01726-4.

    Article 

    Google Scholar
     

  • Zhang Q, Wu J, Yang F, Zhang Q, Cheng X. Alteration in soil microbial communities’ composition and biomass following agricultural land use change. Sci Rep. 2016;6:36587.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao FZ, Ren CJ, Han XH, Yang GH, Wang J, Doughty R, et al. Trends in soil microbial communities in afforestation ecosystem modulated by aggradation phases. Ecol Manag. 2019;441:167–75.

    Article 

    Google Scholar
     



  • Source link