Scientific Papers

Comparative transcriptome analysis between two different cadmium-accumulating genotypes of soybean (Glycine max) in response to cadmium stress | BMC Genomic Data


  • He JL, Li H, Luo J, Ma CF, Li SJ, Qu L, et al. A Transcriptomic network underlies microstructural and physiological responses to cadmium in Populus x canescens. Plant Physiol. 2013;162:424–39. https://doi.org/10.1104/pp.113.215681.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rui HY, Zhang XX, Shinwari KI, Zheng LQ, Shen ZG. Comparative transcriptomic analysis of two Vicia sativa L. varieties with contrasting responses to cadmium stress reveals the important role of metal transporters in cadmium tolerance. Plant Soil. 2018;423:241–55.

    Article 
    CAS 

    Google Scholar
     

  • Uraguchi S, Fujiwara T. Rice breaks ground for cadmium-free cereals. Curr Opin Plant Biol. 2013;16:328–34. https://doi.org/10.1016/j.pbi.2013.03.012.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chakrabarti M, Mukherjee A. Investigating the underlying mechanism of cadmium-induced plant adaptive response to genotoxic stress. Ecotoxicol Environ Saf. 2021;209:111817.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shanying HE, Xiaoe YANG, Zhenli HE, Baligar VC. Morphological and physiological responses of plants to cadmium toxicity: a review. Pedosphere. 2017;27(3):421–38.

    Article 

    Google Scholar
     

  • Hall JL. Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot. 2002;53:1–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weber M, Trampczynska A, Clemens S. Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ. 2006;29(5):950–63. https://doi.org/10.1111/j.1365-3040.2005.01479.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zenk MH. Heavy metal detoxification in higher plants – A review. Gene. 1996;179:21–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng JJ, Jia WT, Lv SL, Bao H, Miao FF, Zhang X, et al. Comparative transcriptome combined with morpho-physiological analyses revealed key factors for differential cadmium accumulation in two contrasting sweet sorghum genotypes. Plant Biotechnol J. 2018;16:558–71. https://doi.org/10.1111/pbi.12795.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu LL, Tian SK, Yang XE, Li TQ, He ZL. Cadmium uptake and xylem loading are active processes in the hyperaccumulator Sedum alfredii. J Plant Physiol. 2009;166:579–87. https://doi.org/10.1016/j.jplph.2008.09.001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lombi E, Tearall KL, Howarth JR, Zhao FJ, Hawkesford MJ, McGrath SP. Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 2002;128:1359–67. https://doi.org/10.1104/pp.010731.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pence NS, Larsen PB, Ebbs SD, Letham D, Lasat MM, Garvin DF, et al. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. P Natl Acad Sci Usa. 2000;97:4956–60. https://doi.org/10.1073/pnas.97.9.4956.

    Article 
    CAS 

    Google Scholar
     

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C. Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J. 2002;32:539–48. https://doi.org/10.1046/j.1365-313X.2002.01442.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao FJ, Hamon RE, Lombi E, McLaughlin MJ, McGrath SP. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot. 2002;53:535–43. https://doi.org/10.1093/jexbot/53.368.535.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lux A, Martinka M, Vaculik M, White PJ. Root responses to cadmium in the rhizosphere: a review. J Exp Bot. 2011;62:21–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kato M, Ishikawa S, Inagaki K, Chiba K, Hayashi H, Yanagisawa S, et al. Possible chemical forms of cadmium and varietal differences in cadmium concentrations in the phloem sap of rice plants (Oryza sativa L.). Soil Sci Plant Nutr. 2010;56:839–47. https://doi.org/10.1111/j.1747-0765.2010.00514.x.

    Article 
    CAS 

    Google Scholar
     

  • Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, et al. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. P Natl Acad Sci Usa. 2011;108:20959–64. https://doi.org/10.2307/23077169.

    Article 
    CAS 

    Google Scholar
     

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette MLM, Cuine S, et al. Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie. 2006;88:1751–65. https://doi.org/10.1016/j.biochi.2006.04.018.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farinati S, DalCorso G, Varotto S, Furini A. The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants. New Phytol. 2010;185:964–78. https://doi.org/10.1111/j.1469-8137.2009.03132.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fusco N, Micheletto L, Dal Corso G, Borgato L, Furini A. Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. J Exp Bot. 2005;56:3017–27. https://doi.org/10.1016/j.bpobgyn.2006.02.002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao J, Sun L, Yang X, Liu JX. Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance. Plos One. 2013;8(6):e64643. https://doi.org/10.1371/journal.pone.0064643.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halimaa P, Lin Y, Ahonen VH, Blande D, Clemens S, Gyenesei A, et al. Gene expression differences between Noccaea caerulescens ecotypes help to identify candidate genes for metal Phytoremediation. Environ Sci Technol. 2014;48:3344–53. https://doi.org/10.1021/es4042995.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Y, Severing EI, Hekkert BTL, Schijlen E, Aarts MGM. A comprehensive set of transcript sequences of the heavy metal hyperaccumulator Noccaea caerulescens. Front Plant Sci. 2014;5:261. https://doi.org/10.3389/fpls.2014.00261.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milner MJ, Mitani-Ueno N, Yamaji N, Yokosho K, Craft E, Fei Z, et al. Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation. Plant J. 2014;78:398–410. https://doi.org/10.1111/tpj.12480.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Romero-Puertas MC, Corpas FJ, Rodriguez-Serrano M, Gomez M, Del Rio LA, Sandalio LM. Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J Plant Physiol. 2007;164(10):1346–57. https://doi.org/10.1016/j.jplph.2006.06.018.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao FB, Chen F, Sun HY, Zhang GP, Chen ZH, Wu FB. Genome-wide transcriptome and functional analysis of two contrasting genotypes reveals key genes for cadmium tolerance in barley. BMC Genomics. 2014;15:611. https://doi.org/10.1186/1471-2164-15-611.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamas L, Dudikova J, Durcekova K, Halugkova L, Huttova J, Mistrik I, et al. Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. J Plant Physiol. 2008;165:1193–203. https://doi.org/10.1016/j.jplph.2007.08.013.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oono Y, Yazawa T, Kawahara Y, Kanamori H, Kobayashi F, Sasaki H, et al. Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in drought stress signal pathways in rice. Plos One. 2014;9:e96946. https://doi.org/10.1371/journal.pone.0096946.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang M, Liu X, Yuan L, Wu K, Duan J, Wang X, et al. Transcriptional profiling in cadmium-treated rice seedling roots using suppressive subtractive hybridization. Plant Physiol Bioch. 2012;50:79–86. https://doi.org/10.1016/j.plaphy.2011.07.015.

    Article 
    CAS 

    Google Scholar
     

  • Wang SQ, Dai HP, Skuza L, Chen YQ, Wei SH. Difference in Cd2+ flux around the root tips of different soybean (Glycine max L.) cultivars and physiological response under mild cadmium stress. Chemosphere. 2022;297:134120. https://doi.org/10.1016/j.chemosphere.2022.134120.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhan J, Twardowska I, Wang S, Wei S, Chen Y, Ljupco M. Prospective sustainable production of safe food for growing population based on the soybean (Glycine max L. Merr.) crops under Cd soil contamination stress. J Clean Prod. 2019;212:22–36.

    Article 
    CAS 

    Google Scholar
     

  • Zhang S, Song J, Wu L, Chen Z. Worldwide cadmium accumulation in soybean grains and feasibility of food production on contaminated calcareous soils. Environ Pollut. 2021;269:116153.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arao T, Ae N, Sugiyama M, Takahashi M. Genotypic differences in cadmium uptake and distribution in soybeans. Plant Soil. 2003;251:247–53. https://doi.org/10.1023/A:1023079819086.

    Article 
    CAS 

    Google Scholar
     

  • Boggess SF, Willavize S, Koeppe DE. Differential response of response of soybean varieties to soil cadmium. Agron J. 1978;70:756–60. https://doi.org/10.2134/agronj1978.00021962007000050015x.

    Article 
    CAS 

    Google Scholar
     

  • Codex Alimentrius Commission. Report of the 33rd Session of the Codex Committee on Food Additives and Contaminants. Netherlands: Hague; 2001. p. 285.


    Google Scholar
     

  • Zhou Q, Guo JJ, He CT, Shen C, Huang YY, Chen JX, et al. Comparative transcriptome analysis between low- and high-cadmium-accumulating genotypes of Pakchoi (Brassica chinensis L.) in response to cadmium stress. Environ Sci Technol. 2016;50:6485–94. https://doi.org/10.1021/acs.est.5b06326.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Normanly J, Slovin JP, Cohen JD. Rethinkin Auxin biosynthesis and metabolism. Plant Physiol. 1995;107:323–9. https://doi.org/10.1104/pp.107.2.323.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quiroga M, Guerrero C, Botella MA, Barceló A, Amaya I, Medina MI, et al. A tomato Peroxidase involved in the synthesis of lignin and Suberin1. Plant Physiol. 2000;122:1119–28. https://doi.org/10.1104/pp.122.4.1119.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martone PT, Estevez JM, Lu F, Ruel K, Denny MW, Somerville C, et al. Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol. 2009;19:169–75. https://doi.org/10.1016/j.cub.2008.12.031.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaoui A, Jarrar B, El FE. Effects of cadmium and copper on peroxidase, NADH oxidase and IAA oxidase activities in cell wall, soluble and microsomal membrane fractions of pea roots. J Plant Physiol. 2004;161:1225–34. https://doi.org/10.1016/j.jplph.2004.02.002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Halušková LU, Valentovičová K, Huttová J, Mistrík I, Tamás L. Effect of heavy metals on root growth and peroxidase activity in barley root tip. Acta Physiol Plant. 2010;32:59–65. https://doi.org/10.1007/s11738-009-0377-1.

    Article 
    CAS 

    Google Scholar
     

  • Hernandez LE, Sobrino-Plata J, Belen Montero-Palmero M, Carrasco-Gil S, Laura Flores-Caceres M, Ortega-Villasante C, et al. Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. J Exp Bot. 2015;66:2901–11. https://doi.org/10.1093/jxb/erv063.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clemens S, Kim EJ, Neumann D, Schroeder JI. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. Embo J. 1999;18:3325–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim H, Yim B, Kim J, Kim H, Lee Y. Molecular characterization of ABC transporters in marine ciliate, Euplotes crassus: Identification and response to cadmium and benzo[a]pyrene. Mar Pollut Bull. 2017;124:725–35. https://doi.org/10.1016/j.marpolbul.2017.01.046.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J. 2007;50(2):207–18. https://doi.org/10.1111/j.1365-313X.2007.03044.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moons A. Ospdr9, which encodes a PDR-type ABC transporter, is induced by heavy metals, hypoxic stress and redox perturbations in rice roots. Febs Lett. 2003;553:370–6. https://doi.org/10.1016/S0014-5793(03)01060-3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guerinot ML. The ZIP family of metal transporters. Bba-Biomembranes. 2000;1465:190–8. https://doi.org/10.1016/s0005-2736(00)00138-3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Plaza S, Tearall KL, Zhao F, Buchner P, McGrath SP, Hawkesford MJ. Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi calerulescens. J Exp Bot. 2007;58:1717–28. https://doi.org/10.1093/jxb/erm025.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gill SS, Tuteja N. Cadmium stress tolerance in crop plants: probing the role of sulfur. (Special Issue: Plant abiotic stress.). Plant Signal Behav. 2014;6:215–22.

    Article 

    Google Scholar
     

  • Swarup R, Bhosale R. Developmenal roles of AUX1/LAX Auxin Influx carriers in plants. Front Plant Sci. 2019;10:1306. https://doi.org/10.3389/fpls.2019.01306.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu FZ, Wang ZW, Dong F, Lei GJ, Shi YZ, Li GX, et al. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls. J Hazard Mater. 2013;263:398–403. https://doi.org/10.1016/j.jhazmat.2013.09.018.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu CL, Sun CD, Shen CJ, Wang SK, Liu F, Chen YL, et al. The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress response in rice (Oryza sativa L.). Plant J. 2015;83:818–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DalCorso G, Farinati S, Furini A. Regulatory networks of cadmium stress in plants. Plant Signal Behav. 2010;5:663–7. https://doi.org/10.4161/psb.5.6.11425.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue M, Zhou YH, Yang ZY, Lin BY, Yuan JG, Wu SS. Comparisons in subcellular and biochemical behaviors of cadmium between low-Cd and high-Cd accumulation cultivars of pakchoi (Brassica chinensis L.). Front Env Sci Eng. 2014;8:226–38. https://doi.org/10.1007/s11783-013-0582-4.

    Article 
    CAS 

    Google Scholar
     

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Rinn JL, Pachter L. et al. Nat Protoc. 2012; 7: 562-578. https://doi.org/10.1038/nprot.2012.016

  • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106. https://doi.org/10.1186/gb-2010-11-10-r106.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The Genome Sequence Archive Family. Toward explosive data growth and diverse data types. Genom Proteom Bioinf. 2021;19(4):578–83. https://doi.org/10.1016/j.gpb.2021.08.001.[PMID=34400360].

    Article 

    Google Scholar
     

  • Database Resources of the National Genomics Data Center. China National Center for Bioinformation in 2022. Nucleic Acids Res. 2022;50(D1):D27–38. https://doi.org/10.1093/nar/gkab951.[PMID=34718731].

    Article 

    Google Scholar
     



  • Source link