Scientific Papers

Characterization of Neowestiellopsis persica A1387 (Hapalosiphonaceae) based on the cpcA, psbA, rpoC1, nifH and nifD gene sequences | BMC Ecology and Evolution


  • Hammerschmidt K, et al. The order of trait emergence in the evolution of cyanobacterial multicellularity. Genome Biol Evol. 2021;13(2):evaa249.

    Article 
    PubMed 

    Google Scholar
     

  • Gugger MF, Hoffmann L. Polyphyly of true branching cyanobacteria (Stigonematales). Int J Syst Evol MicroBiol. 2004;54(2):349–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sciuto K, et al. Polyphasic approach and typification of selected Phormidium strains (Cyanobacteria). Cladistics. 2012;28(4):357–74.

    Article 
    PubMed 

    Google Scholar
     

  • Seo P-S, Yokota A. The phylogenetic relationships of cyanobacteria inferred from 16S rRNA, gyrB, rpoC1 and rpoD1 gene sequences. J Gen Appl Microbiol. 2003;49(3):191–203.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boyer SL, Flechtner VR, Johansen JR. Is the 16S–23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria Molecular biology and evolution, 2001. 18(6): pp. 1057–1069.

  • Premanandh J, et al. Molecular characterization of marine cyanobacteria from the Indian subcontinent deduced from sequence analysis of the phycocyanin operon (cpcB-IGS-cpcA) and 16S-23S ITS region. J Microbiol. 2006;44(6):607–16.

    CAS 
    PubMed 

    Google Scholar
     

  • Cai F, et al. Compactonostoc shennongjiaensis gen. & sp. nov.(Nostocales, Cyanobacteria) from a wet rocky wall in China. Phycologia. 2019;58(2):200–10.

    Article 
    CAS 

    Google Scholar
     

  • Neilan BA, Jacobs D, Goodman AE. Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl Environ Microbiol. 1995;61(11):3875–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nowruzi B, Hutarova L. Structural and functional genes, and highly repetitive sequences commonly used in the phylogeny and species concept of the phylum Cyanobacteria. Volume 44. Algologie: Cryptogamie; 2023. pp. 59–84. 3.


    Google Scholar
     

  • Tawong W, Pongcharoen P, Saijuntha W. Neocylindrospermum Variakineticum gen. & sp. nov.(Nostocales, Cyanobacteria), a novel genus separated from Cylindrospermum using a polyphasic method. Phycologia. 2022;61(6):653–68.

    Article 
    CAS 

    Google Scholar
     

  • Nowruzi B, Shalygin S. Multiple phylogenies reveal a true taxonomic position of Dulcicalothrix alborzica sp. nov.(Nostocales, Cyanobacteria). Fottea. 2021;21(2):235–46.

    Article 

    Google Scholar
     

  • Jeong J-Y, et al. Morphological and phylogenetic analysis of a non-toxic Raphidiopsis curvispora isolated from a drinking water reservoir in South Korea. Mar Freshw Res. 2021;73(1):92–9.

    Article 

    Google Scholar
     

  • Nowruzi B, Hashemi N. A review on the Antimicrobial effects of nanoparticles and Atmospheric Cold plasma technology. J Isfahan Med School. 2023;41(729):631–42.


    Google Scholar
     

  • Ali Anvar SA, Nowruzi B, Afshari G. A review of the application of nanoparticles biosynthesized by Microalgae and Cyanobacteria in Medical and Veterinary sciences. Iran J Veterinary Med, 2023. 17(1).

  • Singh T, Bhadury P. Description of a new marine planktonic cyanobacterial species Synechococcus moorigangaii (Order Chroococcales) from Sundarbans mangrove ecosystem. Phytotaxa. 2019;393(3):263–77.

    Article 

    Google Scholar
     

  • Almeida AVM, et al. How diverse a genus can be: an integrated multi-layered analysis into Desmonostoc (Nostocaceae, cyanobacteriota). Syst Appl Microbiol. 2023;46(3):126422.

    Article 
    PubMed 

    Google Scholar
     

  • Johansen JR, et al. When will taxonomic saturation be achieved? A case study in Nunduva and Kyrtuthrix (Rivulariaceae, Cyanobacteria). J Phycol. 2021;57(6):1699–720.

    Article 
    PubMed 

    Google Scholar
     

  • Mareš J, et al. Taxonomic resolution of the genus cyanothece (Chroococcales, Cyanobacteria), with a treatment on Gloeothece and three new genera, Crocosphaera, Rippkaea, and Zehria. J Phycol. 2019;55(3):578–610.

    Article 
    PubMed 

    Google Scholar
     

  • Lee E, et al. Polyphasic identification of cyanobacterial isolates from Australia. Water Res. 2014;59:248–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shukla E, et al. Homology modeling in combination of phylogenetic assortment, a new approach to resolve the phylogeny of selected heterocystous cyanobacteria based on phycocyanin encoding cpcBA-IGS locus. Vegetos. 2021;34:339–54.

    Article 

    Google Scholar
     

  • Papapanagiotou G, Gkelis S. Taxonomic revision of commercially used Arthrospira (Cyanobacteria) strains: a polyphasic approach. Eur J Phycol. 2019;54(4):595–608.

    Article 
    CAS 

    Google Scholar
     

  • Chun S-J, et al. Network analysis reveals succession of Microcystis genotypes accompanying distinctive microbial modules with recurrent patterns. Water Res. 2020;170:115326.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kabirnataj S, et al. Neowestiellopsis gen. Nov, a new genus of true branched cyanobacteria with the description of Neowestiellopsis persica sp. nov. and neowestiellopsis bilateralis sp. nov., isolated from Iran. Plant Syst Evol. 2018;304(4):501–10.

    Article 
    CAS 

    Google Scholar
     

  • Nowruzi B, et al. A new strain of Neowestiellopsis (Hapalosiphonaceae): first observation of toxic soil cyanobacteria from agricultural fields in Iran. BMC Microbiol. 2022;22(1):107.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rech GE et al. Population-scale long-read sequencing uncovers transposable elements contributing to gene expression variation and associated with adaptive signatures in Drosophila melanogaster bioRxiv, 2021.

  • Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20(4):1160–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Procter JB, et al. Alignment of biological sequences with Jalview, in multiple sequence alignment. Springer; 2021. pp. 203–24.

  • Minh BQ et al. IQ-TREE version 2.0: tutorials and Manual Phylogenomic software by maximum likelihood URL http://www.iqtree. org, 2019.

  • Nguyen L-T, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ronquist F, et al. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49(W1):W293–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guajardo-Leiva S, et al. Active crossfire between Cyanobacteria and cyanophages in phototrophic mat communities within Hot Springs. Front Microbiol. 2018;9:2039.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh P, et al. Decoding cyanobacterial phylogeny and molecular evolution using an evonumeric approach. Protoplasma. 2015;252(2):519–35.

    Article 
    PubMed 

    Google Scholar
     

  • Murray JW. Sequence variation at the oxygen-evolving centre of photosystem II: a new class of ‘rogue’cyanobacterial D1 proteins. Photosynth Res. 2012;110(3):177–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grim SL, Dick GJ. Photosynthetic versatility in the genome of Geitlerinema sp. PCC 9228 (formerly Oscillatoria limnetica ‘Solar Lake’), a model anoxygenic photosynthetic cyanobacterium. Front Microbiol. 2016;7:1546.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheridan KJ, et al. The diversity and distribution of D1 proteins in cyanobacteria. Photosynth Res. 2020;145(2):111–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gan F, Bryant DA. Adaptive and acclimative responses of cyanobacteria to far-red light. Environ Microbiol. 2015;17(10):3450–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson KM, et al. Molecular characterization of the toxic cyanobacterium Cylindrospermopsis raciborskii and design of a species-specific PCR. Appl Environ Microbiol. 2000;66(1):332–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valerio E, et al. Molecular identification, typing and traceability of cyanobacteria from freshwater reservoirs. Microbiology. 2009;155(2):642–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai F, et al. Phylogenetically distant clade of Nostoc-like taxa with the description of Minunostoc gen. nov. and minunostoc cylindricum sp. nov. Fottea. 2019;19(1):13–24.

    Article 

    Google Scholar
     

  • Morales MC, et al. Identificación Y caracterización molecular de cianobacterias tropicales de Los géneros Nostoc, Calothrix, Tolypothrix Y Scytonema (Nostocales: Nostocaceae), con posible potencial biotecnológico. Cuad De Investigación UNED. 2017;9(2):280–8.


    Google Scholar
     

  • Bergsland KJ, Haselkorn R. Evolutionary relationships among eubacteria, cyanobacteria, and chloroplasts: evidence from the rpoC1 gene of Anabaena sp. strain PCC 7120. J Bacteriol. 1991;173(11):3446–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zani S, et al. Expression of nifH genes in natural microbial assemblages in Lake George, New York, detected by reverse transcriptase PCR. Appl Environ Microbiol. 2000;66(7):3119–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watanabe T, Horiike T. The evolution of molybdenum dependent nitrogenase in cyanobacteria. Biology. 2021;10(4):329.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galhano V, et al. Morphological, biochemical and molecular characterization of Anabaena, Aphanizomenon and Nostoc strains (Cyanobacteria, Nostocales) isolated from Portuguese freshwater habitats. Hydrobiologia. 2011;663(1):187–203.

    Article 
    CAS 

    Google Scholar
     

  • Apte S, Prabhavathi N. Rearrangements of nitrogen fixation (nif) genes in the heterocystous cyanobacteria. J Biosci. 1994;19(5):579–602.

    Article 
    CAS 

    Google Scholar
     

  • Ben-Porath J, Zehr J. Detection and characterization of cyanobacterial nifH genes. Appl Environ Microbiol. 1994;60(3):880–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henson BJ, et al. Molecular phylogeny of the heterocystous cyanobacteria (subsections IV and V) based on nifD. Int J Syst Evol MicroBiol. 2004;54(2):493–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baker JA, et al. Identification of cyanobacteria and their toxigenicity in environmental samples by rapid molecular analysis. Environ Toxicol. 2001;16(6):472–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laamanen MJ, et al. Diversity of toxic and nontoxic Nodularia isolates (Cyanobacteria) and filaments from the Baltic Sea. Appl Environ Microbiol. 2001;67(10):4638–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ballot A, et al. Morphological and phylogenetic analysis of Anabaenopsis abijatae and Anabaenopsis elenkinii (Nostocales, Cyanobacteria) from tropical inland water bodies. Microb Ecol. 2008;55(4):608–18.

    Article 
    PubMed 

    Google Scholar
     

  • Wu Z, et al. UNRAVELING MOLECULAR DIVERSITY AND PHYLOGENY OF APHANIZOMENON (NOSTOCALES, CYANOBACTERIA) STRAINS ISOLATED FROM CHINA 1. J Phycol. 2010;46(5):1048–58.

    Article 
    CAS 

    Google Scholar
     

  • Dadheech PK, et al. Phylogenetic relationship and divergence among planktonic strains of Arthrospira (Oscillatoriales, Cyanobacteria) of African, Asian and American origin deduced by 16S–23S ITS and phycocyanin operon sequences. Phycologia. 2010;49(4):361–72.

    Article 
    CAS 

    Google Scholar
     

  • Manen J-F, Falquet J. The cpcb-cpca locus as a tool for the genetic characterization of the genus Arthrospira (Cyanobacteria): evidence for horizontal transfer. Int J Syst Evol MicroBiol. 2002;52(3):861–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Choi G-G, Ahn C-Y, Oh H-M. Phylogenetic relationships of Arthrospira strains inferred from 16S rRNA gene and cpcBA-IGS sequences. Algae. 2012;27(2):75–82.

    Article 
    CAS 

    Google Scholar
     

  • Kumar A, Singh JS. Cyanoremediation: a green-clean tool for decontamination of synthetic pesticides from agro-and aquatic ecosystems Agro-environmental sustainability, 2017: pp. 59–83.

  • Komárek J, et al. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia. 2014;86(4):295–335.


    Google Scholar
     



  • Source link