Scientific Papers

Pangenome characterization and analysis of the NAC gene family reveals genes for Sclerotinia sclerotiorum resistance in sunflower (Helianthus annuus) | BMC Genomic Data


  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 2000;290(5499):2105–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Souer E, van Houwelingen A, Kloos D, Mol J, Koes R. The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell. 1996;85:159–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Larsson E, Sitbon F, Sundström J, von Arnold S. NAC regulation of embryo development in conifers. BMC Proc. 2011;5(Suppl 7):67.

    Article 

    Google Scholar
     

  • Mao C, He J, Liu L, Deng Q, Yao X, Liu C, et al. OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development. Plant Biotechnol J. 2020;18(2):429–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim YS, Kim SG, Park JE, Park HY, Lim MH, Chua NH, et al. A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell. 2006;18(11):3132–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Cui X, Guo Y, Luo C, Zhang L. Picea wilsonii transcription factor NAC2 enhanced plant tolerance to abiotic stress and participated in RFCP1-regulated flowering time. Plant Mol Biol. 2018;98(6):471–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong R, Richardson EA, Ye ZH. Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta. 2007;225:1603–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao S, Zhang Z, Wang C, Li X, Guo C, Yang L, et al. Identification of a novel melon transcription factor CmNAC60 as a potential regulator of leaf senescence. Genes. 2019;10(8):584.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Kang H, Su C, Qi Y, Liu X, Pu J. Genome-wide identification and expression profile analysis of the NAC transcription factor family during abiotic and biotic stress in woodland strawberry. PLoS ONE. 2018;13:e0197892.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rushton PJ, Bokowiec MT, Han S, Zhang H, Brannock JF, Chen X, et al. Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae. Plant Physiol. 2008;147:280–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu R, Qi G, Kong Y, Kong D, Gao Q, Zhou G. Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol. 2010;10:145.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shang H, Li W, Zou C, Yuan Y. Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr.: chromosomal location, structure, phylogeny, and expression patterns. J Integr Plant Biol. 2013;55:663–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Puranik S, Sahu PP, Mandal SN, B VS, Parida SK, Prasad M. Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.). PLoS One. 2013;8:e64594.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, et al. Genome-wide analysis of NAC transcription factor family in rice. Gene. 2010;465(1–2):30–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu LJ, Xing LL, Guo Y, Wang J, Jackson SA, Chang RZ. A platform for soybean molecular breeding: the utilization of core collections for food security. Plant Mol Biol. 2013;83:41–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hurgobin B, Edwards D. SNP discovery using a pangenome: has the single reference approach become obsolete? Biology. 2017;6:21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao Q, Feng Q, Lu H, Li Y, Wang H, Tian Q, et al. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat Genet. 2018;50:278.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li YH, Zhou G, Ma J, Jiang W, Jin LG, Zhang Z, et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol. 2014;32:1045–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, et al. Pan-Genome of wild and cultivated soybeans. Cell. 2020;182(1):162–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G, Vaillancourt B, et al. Insights into the maize pangenome and pan-transcriptome. Plant Cell. 2014;26:121–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin K, Zhang N, Severing EI, Nijveen H, Cheng F, Visser RG, et al. Beyond genomic variation–comparison and functional annotation of three Brassica rapa genomes: a turnip, a rapid cycling and a Chinese cabbage. BMC Genomics. 2014;15:250.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao W, Li G, Zhao H, Wang G, Lian X, Xi W. Exploring the rice dispensable genome using a metagenome-like assembly strategy. Genome Biol. 2015;16:187.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Golicz AA, Bayer PE, Barker GC, Edger PP, Kim H, Martinez PA, et al. The pangenome of an agronomically important crop plant Brassica oleracea. Nat Commun. 2016;7:13390.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee H, Chan CKK, et al. The pangenome of hexaploid bread wheat. Plant J. 2017;90:1007–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hübner S, Bercovich N, Todesco M, Mandel JR, Odenheimer J, Ziegler E, et al. Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nat Plants. 2019;5:54–62.

    Article 
    PubMed 

    Google Scholar
     

  • Hurgobin B, Golicz AA, Bayer PE, Chan CKK, Tirnaz S, Dolatabadian A, et al. Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotechnol J. 2018;16:1265–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song JM, Guan Z, Hu J, Guo C, Yang Z, Wang S, et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants. 2020;6:34–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saxena RK, Edwards D, Varshney RK. Structural variations in plant genomes. Brief Funct Genomics. 2014;13:296–307.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Golicz AA, Batley J, Edwards D. Towards plant pangenomics. Plant Biotechnol J. 2016;14(4):1099–105.

    Article 
    PubMed 

    Google Scholar
     

  • Badouin H, Gouzy J, Grassa CJ, Murat F, Staton SE, Cottret L, et al. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature. 2017;546:148–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li W, Zeng Y, Yin F, Wei R, Mao X. Genome-wide identification and comprehensive analysis of the NAC transcription factor family in sunflower during salt and drought stress. Sci Rep. 2021;11:19865.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Golicz AA, Martinez PA, Zander M, Patel DA, Van De Wouw AP, Visendi P, et al. Gene loss in the fungal canola pathogen Leptosphaeria maculans. Funct Integr Genomics. 2015;15:189–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakmi K, et al. Comprehensive analysis of NAC Family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Res. 2003;10(6):239–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang F, Wang C, Li M, Cui Y, Shi Y, Wu Z, et al. The landscape of gene-CDS-haplotype diversity in rice (Oryza sativa L.): properties, population organization, footprints of domestication and breeding, and implications in genetic improvement. Mol Plant. 2021;14(5):787–804.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheldon AL. Equitability indices: dependence on the species count. Ecology. 1969;50:466–7.

    Article 

    Google Scholar
     

  • Nei M. Genetic distance between populations. Am Nat. 1972;106:283–92.

    Article 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2016.


    Google Scholar
     

  • Talukder ZI, Seiler GJ, Song Q, Ma G, Qi L. SNP discovery and QTL mapping of sclerotinia basal stalk rot resistance in sunflower using genotyping-by-sequencing. Plant Genome. 2016;9(3):1–16.

    Article 
    CAS 

    Google Scholar
     

  • McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The ensembl variant effect predictor. Genome Biol. 2016;17:122.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skidmore ZL, Wagner AH, Lesurf R, Campbell KM, Kunisaki J, Griffith OL, et al. GenVisR: genomic visualizations in R. Bioinformatics. 2016;32:3012–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCF tools. Bioinformatics. 2011;27:2156–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fass MI, Rivarola M, Ehrenbolger GF, Maringolo CA, Lia VV, et al. Exploring sunflower responses to Sclerotinia head rot at early stages of infection using RNA-Seq analysis. Sci Rep. 2020;10:13347.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, et al. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res. 2011;18(4):263–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su HY, Zhang SZ, Yin YL, Zhu DZ, Han LY. Genome-wide analysis of NAM-ATAF1,2-CUC2 transcription factor family in Solanum lycopersicum. J Plant Biochem Biot. 2015;24:176–83.

    Article 
    CAS 

    Google Scholar
     

  • Peng X, Zhao Y, Li X, Wu M, Chai W, Sheng L, et al. Genomewide identification, classification and analysis of NAC type gene family in maize. J Genet. 2015;94:377–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Li D, Wang Y, Zhou R, Wang L, Zhang Y, et al. Genome-wide identification and comprehensive analysis of the NAC transcription factor family in Sesamum indicum. PLoS One. 2018;13:e0199262.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv X, Lan S, Guy KM, Yang J, Zhang M, Hu Z. Global expressions landscape of NAC transcription factor family and their responses to abiotic stresses in Citrullus lanatus. Sci Rep. 2016;6:30574.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kadier Y, Zu Y, Dai Q, Song G, Lin S, Sun Q, et al. Genome-wide identification, classification and expression analysis of NAC family of genes in sorghum [Sorghum bicolor (L.) Moench]. Plant Growth Regul. 2017;83:301–12.

    Article 
    CAS 

    Google Scholar
     

  • Ramaswamy M, Narayanan J, Manickavachagam G, Athiappan S, Arun M, Gomathi R, et al. Genome wide analysis of NAC gene family ‘sequences’ in sugarcane and its comparative phylogenetic relationship with rice, sorghum, maize and Arabidopsis for prediction of stress associated NAC genes. Agri Gene. 2017;3:1–11.

    Article 

    Google Scholar
     

  • Liu X, Wang T, Bartholomew E, Black K, Dong M, Zhang Y, et al. Comprehensive analysis of NAC transcription factors and their expression during fruit spine development in cucumber (Cucumis sativus L.). Hortic Res. 2018;5:31.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diao W, Snyder JC, Wang S, Liu J, Pan B, Guo G, et al. Genome-wide analyses of the NAC transcription factor gene family in pepper (Capsicum annuum L.): chromosome location, phylogeny, structure, expression patterns, cis-elements in the promoter, and interaction network. Int J Mol Sci. 2018;19(4):1028.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan C, Li C, Lu X, Zhao X, Yan C, Wang J, et al. Comprehensive genomic characterization of NAC transcription factor family and their response to salt and drought stress in peanut. BMC Plant Biol. 2020;20:454.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danilevicz MF, Tay Fernandez CG, Marsh JI, Bayer PE, Edwards D. Plant pangenomics: approaches, applications and advancements. Curr Opin Plant Biol. 2020;54:18–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jayakodi M, Schreiber M, Stein N, Mascher M. Building pangenome infrastructures for crop plants and their use in association genetics. DNA Res. 2021;28(1):1–9.

    Article 
    CAS 

    Google Scholar
     

  • Qin P, Lu H, Du H, Wang H, Chen W, Chen Z, et al. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell. 2021;184:3542–3558.e16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hübner S, Korol AB, Schmid KJ. RNA-Seq analysis identifies genes associated with differential reproductive success under drought-stress in accessions of wild barley Hordeum spontaneum. BMC Plant Biol. 2015;15:134.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gordon SP, Contreras-Moreira B, Woods DP, Des Marais DL, Burgess D, Shu S, et al. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat Commun. 2017;8:2184.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature. 2018;557:43–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao Y, Luo H, Xu J, Cruickshank A, Zhao X, Teng F, et al. Extensive variation within the pan-genome of cultivated and wild sorghum. Nat Plants. 2021;7(6):766–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell. 2006;127(7):1309–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bie H, Li Y, Zhao Y, Fang W, Chen C, Wang X, et al. Genome-wide presence/absence variation discovery and its application in Peach (Prunus persica). Plant Sci. 2023;335:111778.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D. Plant pan-genomes are the new reference. Nat Plants. 2020;6(8):1–7.

    Article 

    Google Scholar
     

  • Christianson JA, Dennis ES, Llewellyn DJ, Wilson IW. ATAF NAC transcription factors: regulators of plant stress signaling. Plant Signal Behav. 2010;5(4):428–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harter AV, Gardner KA, Falush D, Lentz DL, Bye RA, Rieseberg LH. Origin of extant domesticated sunflower in eastern North America. Nature. 2004;430:201–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thompson TE, Zimmerman DC, Rogers CE. Wild Helianthus as a genetic resource. Field Crop Res. 1981;4:333–43.

    Article 

    Google Scholar
     

  • Seiler GJ. Utilization of wild sunflower species for the improvement of cultivated sunflower. Field Crops Res. 1992;30:195–230.

    Article 

    Google Scholar
     

  • Jan CC. Cytoplasmic male sterility in two wild Helianthus annuus L. accessions and their fertility restoration. Crop Sci. 2000;40:1535–8.

    Article 

    Google Scholar
     

  • Seiler GJ. Utilization of wild Helianthus species in breeding for disease resistance. Proceedings of the International Sunflower Association (ISA) Symposium “Sunflower breeding on resistance to diseases,” June, 23-24, 2010, Krasnodar, Russia. p. 36–50.

  • Qi LL, Foley ME, Cai XW, Gulya TJ. Genetics and mapping of a novel downy mildew resistance gene, Pl18, introgressed from wild Helianthus argophyllus into cultivated sunflower (Helianthus annuus L.). Theor Appl Genet. 2016;129:741–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi L, Long Y, Talukder ZI, Seiler GJ, Block CC, Gulya TJ. Genotyping-by-sequencing uncovers the introgression alien segments associated with sclerotinia basal stalk rot resistance from wild species—I. Helianthus argophyllus and H. petiolaris. Front Genet. 2016;7:219.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ganal MW, Altmann T, Röder MS. SNP identification in crop plants. Curr Opin Plant Biol. 2009;12:211–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen N, Wu S, Fu J, Cao B, Lei J, Chen C, et al. Overexpression of the eggplant (Solanum melongena) NAC family transcription factor SmNAC suppresses resistance to bacterial wilt. Sci Rep. 2016;6:31568.

    Article 
    CAS 

    Google Scholar
     

  • Chen C, Jost M, Outram MA, Friendship D, Chen J, Wang A, et al. A pathogen-induced putative NAC transcription factor mediates leaf rust resistance in barley. Nat Commun. 2023;14:5468.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Son S, Song G, Nam S, Lee G, Im J, Lee KS, et al. CRISPR/Cas9-mediated mutagenesis of rice NAC transcription factor genes results in altered innate immunity. Plant Physiol. 2024;00:1–5.


    Google Scholar
     

  • Boland GJ, Hall R. Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol. 1994;16:93–108.

    Article 

    Google Scholar
     

  • Dai FM, Xu T, Wolf GA, He ZH. Physiological and molecular features of the pathosystem Arabidopsis thaliana L.-Sclerotinia sclerotiorum Libert. J Integr Plant Biol. 2006;48:44–52.

    Article 
    CAS 

    Google Scholar
     

  • Zhao J, Wang J, An L, Doerge RW, Chen ZJ, Grau CR, et al. Analysis of gene expression profiles in response to Sclerotinia sclerotiorum in Brassica napus. Planta. 2007;227:13–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joshi RK, Megha S, Rahman MH, Basu U, Kav NNV. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq. Gene. 2016;590:57–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Girard IJ, Tong CB, Becker MG, Mao X, Huang J, de Kievit T, et al. RNA sequencing of Brassica napus reveals cellular redox control of Sclerotinia infection. J Exp Bot. 2017;68:5079–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wen Z, Tan R, Zhang S, Collins PJ, Yuan J, Du W, et al. Integrating GWAS and gene expression data for functional characterization of resistance to white mould in soya bean. Plant Biotechnol J. 2018;16:1825–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link