Scientific Papers

What drives wild pig (Sus scrofa) movement in bottomland and upland forests? | Movement Ecology


  • Westphal MI, Browne M, MacKinnon K, Noble I. The link between international trade and the global distribution of invasive alien species. Biol Invasions. 2008;10:391–8. https://doi.org/10.1007/s10530-007-9138-5.

    Article 

    Google Scholar
     

  • Hulme PE. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol. 2009;46(1):10–8. https://doi.org/10.1111/j.1365-2664.2008.01600.x.

    Article 

    Google Scholar
     

  • Zenni RD, Nunez MA. The elephant in the room: the role of failed invasions in understanding invasion biology. Oikos. 2013;122(6):801–15. https://doi.org/10.1111/j.1600-0706.2012.00254.x.

    Article 

    Google Scholar
     

  • Kim J, Mandrak NE. Assessing the potential movement of invasive fishes through the Welland Canal. J Great Lakes Res. 2016;42(5):1102–8. https://doi.org/10.1016/j.jglr.2016.07.009.

    Article 

    Google Scholar
     

  • Coulter AA, Brey MK, Lubejko M, Kallis JL, Coulter DP, Glover DC, Whitledge GW, Garvey JE. Multistate models of bigheaded carps in the Illinois River reveal spatial dynamics of invasive species. Biol Invasions. 2018;20:3255–70. https://doi.org/10.1007/s10530-018-1772-6.

    Article 

    Google Scholar
     

  • Sena FH, Schulz K, Cierjacks A, Falcão HM, Lustosa BM, Almeida JS. Goats foster endozoochoric dispersal of exotic species in a seasonally dry tropical forest ecosystem. J Arid Environ. 2021;188:104473. https://doi.org/10.1016/j.jaridenv.2021.104473.

    Article 

    Google Scholar
     

  • Kalb DM, Bowman JL, Eyler TB. Dispersal and home-range dynamics of exotic, male sika deer in Maryland. Wildl Res. 2013;40(4):328–35. https://doi.org/10.1071/WR13037.

    Article 

    Google Scholar
     

  • Prechtel AR, Coulter AA, Etchison L, Jackson PR, Goforth RR. Range estimates and habitat use of invasive Silver Carp (Hypophthalmichthys molitrix): evidence of sedentary and mobile individuals. Hydrobiologia. 2018;805:203–18. https://doi.org/10.1007/s10750-017-3296-y.

    Article 

    Google Scholar
     

  • Pietrek AG, González-Roglich M. Post-establishment changes in habitat selection by an invasive species: beavers in the Patagonian steppe. Biol Invasions. 2015;17:3225–35. https://doi.org/10.1007/s10530-015-0948-6.

    Article 

    Google Scholar
     

  • Walters TM, Mazzotti FJ, Fitz HC. Habitat selection by the invasive species Burmese python in southern Florida. J Herpetol. 2016;50(1):50–6. https://doi.org/10.1670/14-098.

    Article 

    Google Scholar
     

  • Stohlgren TJ, Schnase JL. Risk analysis for biological hazards: what we need to know about invasive species. Risk Analysis: Int J. 2006;26(1):163–73. https://doi.org/10.1111/j.1539-6924.2006.00707.x.

    Article 

    Google Scholar
     

  • Kenward RE, Holm JL. On the replacement of the red squirrel in Britain: a phytotoxic explanation. Proc R Soc Lond. 1993;251(1332):187–94. https://doi.org/10.1098/rspb.1993.0028.

    Article 
    CAS 

    Google Scholar
     

  • Stiers I, Crohain N, Josens G, Triest L. Impact of three aquatic invasive species on native plants and macroinvertebrates in temperate ponds. Biol Invasions. 2011;13:2715–26. https://doi.org/10.1007/s10530-011-9942-9.

    Article 

    Google Scholar
     

  • Lankau RA. Intraspecific variation in allelochemistry determines an invasive species’ impact on soil microbial communities. Oecologia. 2011;165(2):453–63. https://doi.org/10.1007/s00442-010-1736-8.

    Article 
    PubMed 

    Google Scholar
     

  • Chamier J, Schachtschneider K, Le Maitre DC, Ashton PJ, Van Wilgen BW. Impacts of invasive alien plants on water quality, with particular emphasis on South Africa. Water SA. 2012;38(2):345–56. https://doi.org/10.4314/wsa.v38i2.19.

    Article 

    Google Scholar
     

  • Clarkson BR, Ausseil AGE, Gerbeaux P. Wetland ecosystem services. Ecosystem services in New Zealand: conditions and trends. Manaaki Whenua Press, Lincoln. 2013;1:192–202.

  • Pedrosa F, Berce W, Levi T, Pires M, Galetti M. Seed dispersal effectiveness by a large-bodied invasive species in defaunated landscapes. Biotropica. 2019;00:1–12. https://doi.org/10.1111/btp.12706.

    Article 

    Google Scholar
     

  • Börger L, Franconi N, Ferretti F, Meschi F, De Michele G, Gantz A, Coulson T. An integrated approach to identify spatiotemporal and individual-level determinants of animal home range size. Am Nat. 2006a;168(4):471–85. https://doi.org/10.1086/507883.

    Article 
    PubMed 

    Google Scholar
     

  • Bengsen AJ, Butler JA, Masters P. Applying home-range and landscape-use data to design effective feral-cat control programs. Wildl Res. 2012;39(3):258–65. https://doi.org/10.1071/WR11097.

    Article 

    Google Scholar
     

  • Smith DH, Clayton R, Anderson D, Warburton B. Using home-range data to optimize the control of invasive animals. N Z J Ecol. 2015;39(2):286–90. https://www.jstor.org/stable/26198723.


    Google Scholar
     

  • Johnson DH. The comparison of usage and availability measurements for evaluations of resource preference. Ecology. 1980;61:65–71. https://doi.org/10.2307/1937156.

    Article 

    Google Scholar
     

  • Ward JP, Gutiérrez RJ, Noon BR. Habitat selection by northern spotted owls: the consequences of prey selection and distribution. Condor. 1998;100(1):79–92. https://doi.org/10.2307/1369899.

    Article 

    Google Scholar
     

  • Rumble MA, Gamo RS. Resource selection by elk at two spatial scales in the Black Hills, South Dakota. Prairie Nat. 2011;43:3–13.


    Google Scholar
     

  • Jenkins JM, Thompson FR III, Faaborg J. Species-specific variation in nesting and postfledging resource selection for two forest breeding migrant songbirds. PLoS ONE. 2017;12(6):e0179524. https://doi.org/10.1371/journal.pone.0179524.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stillfried M, Belant JL, Svoboda NJ, Beyer DE, Kramer-Schadt S. When top predators become prey: black bears alter movement behaviour in response to hunting pressure. Behav Process. 2015;120:30–9. https://doi.org/10.1016/j.beproc.2015.08.003.

    Article 

    Google Scholar
     

  • Merrill SB, Mech LD. The usefulness of GPS telemetry to study wolf circadian and social activity. Wildl Soc Bull. 2003;31(4):947–60. https://www.jstor.org/stable/3784439.


    Google Scholar
     

  • Marks CA, Bloomfield TE. Home-range size and selection of natal den and diurnal shelter sites by urban red foxes (Vulpes vulpes) in Melbourne. Wildl Res. 2006;33:339–47. https://doi.org/10.1071/WR04058.

    Article 

    Google Scholar
     

  • Choquenot D, Ruscoe WA. Landscape complementation and food limitation of large herbivores: habitat-related constraints on the foraging efficiency of wild pigs. J Anim Ecol. 2003;72(1):14–26. https://doi.org/10.1046/j.1365-2656.2003.00676.x.

    Article 

    Google Scholar
     

  • Fernandez-Llario P. Environmental correlates of nest site selection by wild boar Sus scrofa. Acta Theriol. 2004;49(3):383–92. https://doi.org/10.1007/BF03192536.

    Article 

    Google Scholar
     

  • Keiter DA, Mayer JJ, Beasley JC. What is in a common name? A call for consistent terminology for nonnative Sus scrofa. Wildl Soc Bull. 2016;40(2):384–7. https://doi.org/10.1002/wsb.649.

    Article 

    Google Scholar
     

  • Gray SM, Roloff GJ, Kramer DB, Etter DR, VerCauteren KC, Montgomery RA. Effects of wild pig disturbance on forest vegetation and soils. J Wildl Manage. 2020;84(4):739–48. https://doi.org/10.1002/jwmg.21845.

    Article 

    Google Scholar
     

  • Sanders HN, Hewitt DG, Perotto-Baldivieso HL, VerCauteren KC, Snow NP. Opportunistic predation of wild Turkey nests by wild pigs. J Wildl Manage. 2020;84(2):293–300. https://doi.org/10.1002/jwmg.21797.

    Article 

    Google Scholar
     

  • Boyer KS, Fairbanks WS, Rohla C, Webb SL. Surficial soil damage by wild pigs (Sus scrofa) decreases pecan harvest efficiency. Crop Prot. 2020;128:104992. https://doi.org/10.1016/j.cropro.2019.104992.

    Article 

    Google Scholar
     

  • Siemann E, Carrillo JA, Gabler CA, Zipp R, Rogers WE. Experimental test of the impacts of feral hogs on forest dynamics and processes in the southeastern US. Ecol Manag. 2009;258:546–53. https://doi.org/10.1016/j.foreco.2009.03.056.

    Article 

    Google Scholar
     

  • Singer FJ, Swank WT, Clebsch EEC. Effects of wild pig rooting in a deciduous forest. J Wildl Manage. 1984;48(2):464–73. https://doi.org/10.2307/3801179.

    Article 
    CAS 

    Google Scholar
     

  • Sweitzer RA, Van Vuren DH. Rooting and foraging effects of wild pigs on tree regeneration and acorn survival in California’s oak woodland ecosystems. Proceedings of the Fifth Symposium on Oak Woodlands: Oaks in California’s Changing Landscape. 2002;219–231.

  • Focardi S, Capizzi D, Monetti D. Competition for acorns among wild boar (Sus scrofa) and small mammals in a Mediterranean Woodland. J Zool Lond. 2000;250:329–34. https://doi.org/10.1111/j.1469-7998.2000.tb00777.x.

    Article 

    Google Scholar
     

  • Ditchkoff SS, Mayer JJ. (2009). Wild pig food habits. In: Mayer JJ, Brisbin Jr. IL, editors. Wild pigs: biology, damage, control techniques, and management. Washington, DC: Department of Energy; 2009. P. 105–143.

  • Keuling O, Stier N, Roth M. How does hunting influence activity and spatial usage in wild boar Sus scrofa L? Eur J Wildl Res. 2008a;54:729–37. https://doi.org/10.1007/s10344-008-0204-9.

    Article 

    Google Scholar
     

  • Thurfjell H, Spong G, Olsson M, Ericsson G. Avoidance of high traffic levels results in lower risk of wild boar-vehicle accidents. Landsc Urban Plan. 2015;133:98–104. https://doi.org/10.1016/j.landurbplan.2014.09.015.

    Article 

    Google Scholar
     

  • Oliveira-Santos LGR, Forester JD, Piovezan U, Tomas WM, Fernandez FAS. Incorporating animal spatial memory in step selection functions. J Anim Ecol. 2016;85(2):516–24. https://doi.org/10.1111/1365-2656.12485.

    Article 
    PubMed 

    Google Scholar
     

  • Kay SL, Fischer JW, Monaghan AJ, Beasley JC, Boughton R, Campbell TA, Cooper SM, Ditchkoff SS, Hartley SB, Kilgo JC, Wisely SM, Wyckoff AC, VerCauteren KC, Pepin KM. Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Mov Ecol. 2017;5(14):1–15. https://doi.org/10.1186/s40462-017-0105-1.

    Article 

    Google Scholar
     

  • Boyce CM, VerCauteren KC, Beasley JC. Timing and extent of crop damage by wild pigs (Sus scrofa Linnaeus) to corn and peanut fields. Crop Prot. 2020;133:105131. https://doi.org/10.1016/j.cropro.2020.105131.

    Article 

    Google Scholar
     

  • Keuling O, Stier N, Roth M. Annual and seasonal space use of different age classes of female wild boar Sus scrofa L. Eur J Wildl Res. 2008b;54:403–12. https://doi.org/10.1007/s10344-007-0157-4.

    Article 

    Google Scholar
     

  • Thurfjell H, Ball JP, Ahlen P, Kornacher P, Dettki H, Sjoberg K. Habitat use and spatial patterns of wild boar Sus scrofa (L.): agricultural fields and edges. Eur J Wildl Res. 2009;55:517–23. https://doi.org/10.1007/s10344-009-0268-1.

    Article 

    Google Scholar
     

  • Paolini KE, Strickland BK, Tegt JL, VerCauteren KC, Street GM. Seasonal variation in preference dictates space use in an invasive generalist. PLoS ONE. 2018;13(7):e0199078. https://doi.org/10.1371/journal.pone.0199078.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Froehly JL, Beane NR, Evans DE, Cagle KE, Jachowski DS. Using multi-scale behavioral investigations to inform wild pig (Sus scrofa) population management. PLoS ONE. 2020;15(2):e0228705. https://doi.org/10.1371/journal.pone.0228705.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lavelle MJ, Snow NP, Halseth JM, VanNatta EH, Sanders HN, VerCauteren KC. Evaluation of movement behaviors to inform toxic baiting strategies for invasive wild pigs (Sus scrofa). Pest Manag Sci. 2018;74:2504–10. https://doi.org/10.1002/ps.4929.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kramer CJ, Boudreau MR, Miller RS, Powers R, VerCauteren KC, Brook RK. Summer habitat use and movements of invasive wild pigs (Sus scrofa) in Canadian agro-ecosystems. Can J Zool. 2022;100(8):494–506. https://doi.org/10.1139/cjz-2021-0116.

    Article 

    Google Scholar
     

  • Hartley SB, Goatcher BL, Sapkota SK. Movements of wild pigs in Louisiana and Mississippi, 2011-13. U.S. Department of the Interior, U.S. Geological Survey; 2015.

  • Mayer JJ, Brisbin IL. Wild pigs in the United States: their history, comparative morphology, and current status. Athens, Georgia, USA: The University of Georgia; 1991.


    Google Scholar
     

  • Mississippi State University Extension Service. Wild hogs in Mississippi: Emerging issues and potential problems. 2021. https://www.wildpiginfo.msstate.edu/pdfs/booklet.pdf. Accessed 25 July 2023.

  • Dentinger JE. An unsupervised machine-learning framework for behavioral classification from animal-borne accelerometers. Mississippi State, Mississippi. Thesis. 2019.

  • Hayes R, Riffell S, Minnis R, Holder B. Survival and habitat use of feral hogs in Mississippi. Southeast Nat. 2009;8(3):411–26. https://doi.org/10.1656/058.008.0304.

    Article 

    Google Scholar
     

  • United States Fish and Wildlife Service, Sam D. Hamilton Noxubee National Wildlife Refuge: Mississippi. 2023. https://www.fws.gov/refuge/sam-d-hamilton-noxubee. Accessed 25 July 2023.

  • Dzieciolowski RM, Clarke CMH, Frampton CM. Reproductive characteristics of feral pigs in New Zealand. Acta Theriol. 1992;37(3):259–70.

    Article 

    Google Scholar
     

  • Ditchkoff SS, Jolley DB, Sparklin BD, Hanson LB, Mitchell MS, Grand JB. Reproduction in a population of wild pigs (Sus scrofa) subjected to lethal control. J Wildl Manage. 2012;76(6):1235–40. https://doi.org/10.1002/jwmg.356.

    Article 

    Google Scholar
     

  • Bieber C, Ruf T. Population dynamics in wild boar Sus scrofa: ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. J Appl Ecol. 2005;42(6):1203–13. https://doi.org/10.1111/j.1365-2664.2005.01094.x.

    Article 

    Google Scholar
     

  • Ellis CK, Wehtje ME, Wolfe LL, Wolff PL, Hilton CD, Fisher MC, Green S, Glow MP, Halseth JM, Lavelle MJ, Snow NP, VanNatta EH, Rhyan JC, VerCauteren KC, Lance WR, Nol P. Comparison of the efficacy of four drug combinations for immobilization of wild pigs. Eur J Wildl Res. 2019;65:78. https://doi.org/10.1007/s10344-019-1317-z.

    Article 

    Google Scholar
     

  • Fleming CH, Fagan WF, Mueller T, Olson KA, Leimgruber P, Calabrese JM. Rigorous home range estimation with movement data: a new autocorrelated kernel density estimator. Ecology. 2015;96(5):1182–8. https://doi.org/10.1890/14-2010.1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Börger L, Franconi N, De Michele G, Gantz A, Meschi F, Manica A, Lovari S, Coulson TIM. Effects of sampling regime on the mean and variance of home range size estimates. J Anim Ecol. 2006b;75(6):1393–405. https://www.jstor.org/stable/4125081.

    Article 
    PubMed 

    Google Scholar
     

  • Vander Wal E, Rodgers AR. An individual-based quantitative approach for delineating core areas of animal space use. Ecol Model. 2012;224(1):48–53. https://doi.org/10.1016/j.ecolmodel.2011.10.006.

    Article 

    Google Scholar
     

  • Calabrese JM, Fleming CH, Gurarie E. Ctmm: an R package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol Evol. 2016;7:1124–32.

    Article 

    Google Scholar
     

  • R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2021.


    Google Scholar
     

  • Thurfjell H, Ciuti S, Boyce MS. Applications of step-selection functions in ecology and conservation. Mov Ecol. 2014;2:4. https://doi.org/10.1186/2051-3933-2-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dewitz J, National Land Cover Database (NLCD). 2016 Products: U.S. Geological Survey data release. 2019. https://doi.org/10.5066/P96HHBIE.

  • Environmental Systems Research Institute. ArcGIS Desktop: Release 10.6.1. Redlands. CA: Environmental Systems Research Institute; 2017.


    Google Scholar
     

  • Mississippi Automated Resource Information System. Hydrology: DLG Perennial and DLG Intermittent Streams – 1983. 1992. https://maris.mississippi.edu/HTML/Data.html#gsc.tab=0. Accessed 25 July 2023.

  • Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc B: Stat Methodol. 1996;58(1):267–88. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.

    Article 

    Google Scholar
     

  • Reid S, Tibshirani R. Regularization paths for conditional logistic regression: the clogitL1 package. J Stat Softw. 2014;58(12):12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaston W, Armstrong JB, Arjo W, Stribling HL. Home range and habitat use of feral pigs (Sus scrofa) on Lowndes County WMA, Alabama. National Conference on Feral Hogs. St. Louis, Missouri, USA. 2008.

  • Scillitani L, Monaco A, Toso S. Do intensive drive hunts affect wild boar (Sus scrofa) spatial behaviour in Italy? Some evidences and management implications. Eur J Wildl Res. 2010;56:307–18. https://doi.org/10.1007/s10344-009-0314-z.

    Article 

    Google Scholar
     

  • Wood S, Wood MS. Package ‘mgcv’. R Package Version. 2015;1(29):729.


    Google Scholar
     

  • Fieberg J, Kochanny CO. Quantifying home-range overlap: the importance of the utilization distribution. J Wildl Manage. 2005;69(4):1346–59. https://doi.org/10.2193/0022-541X. (2005)69[1346:QHOTIO]2.0.CO;2.

    Article 

    Google Scholar
     

  • Downs JA, Horner MW. Effects of point pattern shape on home-range estimates. J Wildl Manage. 2008;72(8):1813–8. https://doi.org/10.2193/2007-454.

    Article 

    Google Scholar
     

  • Kilgo JC, Garabedian JE, Vukovich M, Schlichting PE, Byrne ME, Beasley JC. Food resources affect territoriality of invasive wild pig sounders with implications for control. Sci Rep. 2021;11(1):18821. https://doi.org/10.1038/s41598-021-97798-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Satter CB. The spatial ecology of wild pigs (Sus scrofa) in southwest Florida. Virginia Tech. Dissertation. 2023.

  • Clontz LM, Pepin KM, VerCauteren KC, Beasley JC. Influence of biotic and abiotic factors on home range size and shape of invasive wild pigs (Sus scrofa). Pest Manag Sci. 2022;78:914–28. https://doi.org/10.1002/ps.6701.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clontz LM, Pepin KM, VerCauteren KC, Beasley JC. Behavioral state resource selection in invasive wild pigs in the Southeastern United States. Sci Rep. 2021;11(1):6924. https://doi.org/10.1038/s41598-021-86363-3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weisberg PJ, Mortenson SG, Dilts TE. Gallery forest or herbaceous wetland? The need for multi-target perspectives in riparian restoration planning. Restor Ecol. 2013;21(1):12–6. https://doi.org/10.1111/j.1526-100X.2012.00907.x.

    Article 

    Google Scholar
     

  • Street GM, Potts JR, Börger L, Beasley JC, Demarais S, Fryxell JM, McLoughlin PD, Monteith KL, Prokopenko CM, Ribeiro MC, Rodgers AR, Strickland BK, et al. Solving the sample size problem for resource selection functions. Methods Ecol Evol. 2021;12(12):2421–31. https://doi.org/10.1111/2041-210X.13701.

    Article 

    Google Scholar
     

  • Potts JR, Börger L, Strickland BK, Street GM. Assessing the predictive power of step selection functions: how social and environmental interactions affect animal space use. Methods Ecol Evol. 2022;13(8):1805–18. https://doi.org/10.1111/2041-210X.13904.

    Article 

    Google Scholar
     



  • Source link