Scientific Papers

Emergence and genomic chion of Proteus mirabilis harboring blaNDM-1 in Korean companion dogs | Veterinary Research


  • O’Hara CM, Brenner FW, Miller JM (2000) Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin Microbiol Rev 13:534–546

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathur S, Sabbuba N, Suller M, Stickler D, Feneley R (2005) Genotyping of urinary and fecal Proteus mirabilis isolates from individuals with long-term urinary catheters. Eur J Clin Microbiol Infect Dis 24:643–644

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schaffer JN, Pearson MM (2015) Proteus mirabilis and urinary tract infections. Microbiol Spectr 3:10.1128/microbiolspec.uti-0017-2013

    Article 
    PubMed 

    Google Scholar
     

  • Kanzari L, Ferjani S, Saidani M, Hamzaoui Z, Jendoubi A, Harbaoui S, Ferjani A, Rehaiem A, Boubaker IBB, Slim A (2018) First report of extensively-drug-resistant Proteus mirabilis isolate carrying plasmid-mediated blaNDM-1 in a Tunisian intensive care unit. Int J Antimicrob Agents 52:906–909

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR (2009) Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agent Chemother 53:5046–54

    Article 
    CAS 

    Google Scholar
     

  • Walsh TR, Weeks J, Livermore DM, Toleman MA (2011) Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 11:355–362

    Article 
    PubMed 

    Google Scholar
     

  • Dortet L, Poirel L, Nordmann P (2014) Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed Res Int 2014:249856

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deshpande LM, Rhomberg PR, Sader HS, Jones RN (2006) Emergence of serine carbapenemases (KPC and SME) among clinical strains of Enterobacteriaceae isolated in the United States medical centers: report from the MYSTIC Program (1999–2005). Diagn Microbiol Infect Dis 56:367–372

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu W, Feng Y, Tang G, Qiao F, McNally A, Zong Z (2019) NDM metallo-β-lactamases and their bacterial producers in health care settings. Clin Microbiol Rev 32:e00115-18

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong D, Li M, Liu Z, Feng J, Jia N, Zhao H, Zhao B, Zhou T, Zhang X, Tong Y (2019) Characterization of a NDM-1-encoding plasmid pHFK418-NDM from a clinical Proteus mirabilis isolate harboring two novel transposons, Tn6624 and Tn6625. Front Microbiol 10:2030

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong L-H, Xiang R, Wang Y-L, Wu S-K, Lei C-W, Kang Z-Z, Chen Y-P, Ye X-L, Lai Y, Wang H-N (2020) Integration of the blaNDM-1 carbapenemase gene into a novel SXT/R391 integrative and conjugative element in Proteus vulgaris. J Antimicrob Chemother 75:1439–1442

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaheen BW, Nayak R, Boothe DM (2013) Emergence of a New Delhi metallo-β-lactamase (NDM-1)-encoding gene in clinical Escherichia coli isolates recovered from companion animals in the United States. Antimicrob Agent Chemother 57:2902–2903

    Article 
    CAS 

    Google Scholar
     

  • Stolle I, Prenger-Berninghoff E, Stamm I, Scheufen S, Hassdenteufel E, Guenther S, Bethe A, Pfeifer Y, Ewers C (2013) Emergence of OXA-48 carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in dogs. J Antimicrob Chemother 68:2802–2808

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poirel L, Walsh TR, Cuvillier V, Nordmann P (2011) Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 70:119–123

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wick R, Menzel P (2019)

  • Kolmogorov M, Yuan J, Lin Y, Pevzner PA (2019) Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 37:540–546

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA, Harris SR (2015) Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol 16:294

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212

    Article 
    PubMed 

    Google Scholar
     

  • Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buchfink B, Reuter K, Drost H-G (2021) Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Method 18:366–368

    Article 
    CAS 

    Google Scholar
     

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stothard P, Wishart DS (2005) Circular genome visualization and exploration using CGView. Bioinformatics 21:537–539

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:D733-45

    Article 
    PubMed 

    Google Scholar
     

  • Center for Genomic Epidemiology (CGE) server (2011)

  • Kaas RS, Leekitcharoenphon P, Aarestrup FM, Lund O (2014) Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS One 9:e104984

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letunic I, Bork P (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucl Acids Res 49:W293-96

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP (2008) Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol 29:1099–1106

    Article 
    PubMed 

    Google Scholar
     

  • Yamamoto M, Pop-Vicas AE (2014) Treatment for infections with carbapenem-resistant Enterobacteriaceae: what options do we still have? Crit Care 18:229

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park S-H, Kim J-S, Kim H-S, Yu J-K, Han S-H, Kang M-J, Hong C-K, Lee S-M, Oh Y-H (2020) Prevalence of carbapenem-resistant Enterobacteriaceae in Seoul, Korea. J Bacteriol Res 50:107–116


    Google Scholar
     

  • Park S-H, Park S-H, Kim J-S, Yu J-K, Kim J-K, Suh H-S, Kwon EY, Park KA, Cha EK, Shin JM (2022) Genetic distribution of carbapenem-resistant Enterobacteriaceae in Seoul Korea, 2018–2020. J Bacteriol Virol 52:28–38

    Article 
    CAS 

    Google Scholar
     

  • Kwak B, Hong J, Bae HG, Park YS, Lee MK, Lee K, Lee KR (2022) Microorganisms isolated from urine cultures and their antimicrobial susceptibility patterns at a commercial laboratory during 2018–2020. Korean J HealthcAssoc Infect Control Prev 27:51–58

    Article 

    Google Scholar
     

  • Moon D-C, Choi J-H, Boby N, Kang H-Y, Kim S-J, Song H-J, Park H-S, Gil M-C, Yoon S-S, Lim S-K (2022) Bacterial prevalence in skin, urine, diarrheal stool, and respiratory samples from dogs. Microorganisms 10:1668

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rózalski A, Sidorczyk Z, Kotełko K (1997) Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev 61:65–89

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cestari SE, Ludovico MS, Martins FH, da Rocha SPD, Elias WP, Pelayo JS (2013) Molecular detection of HpmA and HlyA hemolysin of uropathogenic Proteus mirabilis. Curr Microbiol 67:703–707

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Norsworthy AN, Pearson MM (2017) From catheter to kidney stone: the uropathogenic lifestyle of Proteus mirabilis. Trend Microbiol 25:304–315

    Article 
    CAS 

    Google Scholar
     

  • Manos J, Belas R (2006) The genera Proteus, Providencia, and Morganella. Prokaryotes 6:245–269

    Article 

    Google Scholar
     

  • Jacobsen SM, Shirtliff ME (2011) Proteus mirabilis biofilms and catheter-associated urinary tract infections. Virulence 2:460–465

    Article 
    PubMed 

    Google Scholar
     

  • Armbruster CE, Mobley HL, Pearson MM (2018) Pathogenesis of Proteus mirabilis infection. EcoSal Plus. https://doi.org/10.1128/ecosalplus.ESP-0009-2017

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Filipiak A, Chrapek M, Literacka E, Wawszczak M, Głuszek S, Majchrzak M, Wróbel G, Łysek-Gładysińska M, Gniadkowski M, Adamus-Białek W (2020) Pathogenic factors correlate with antimicrobial resistance among clinical Proteus mirabilis strains. Front Microbiol 11:579389

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nordmann P, Naas T, Poirel L (2011) Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 17:1791–1798

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaw K, Rather P, Hare R, Miller G (1993) Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 57:138–163

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y-P, Lei C-W, Kong L-H, Zeng J-X, Zhang X-Z, Liu B-H, Li Y, Xiang R, Wang Y-X, Chen D-Y (2018) Tn6450, a novel multidrug resistance transposon characterized in a Proteus mirabilis isolate from chicken in China. Antimicrob Agents Chemother 62:02192–17

    Article 

    Google Scholar
     

  • Poirel L, Leviandier C, Nordmann P (2006) Prevalence and genetic analysis of plasmid-mediated quinolone resistance determinants QnrA and QnrS in Enterobacteriaceae isolates from a French university hospital. Antimicrob Agent Chemother 50:3992–3997

    Article 
    CAS 

    Google Scholar
     

  • He J, Li C, Cui P, Wang H (2020) Detection of Tn7-like transposons and antibiotic resistance in Enterobacterales from animals used for food production with identification of three novel transposons Tn6813, Tn6814, and Tn6765. Front Microbiol 11:2049

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jovčić B, Lepsanović Z, Begović J, Rakonjac B, Perovanović J, Topisirović L, Kojić M (2013) The clinical isolate Pseudomonas aeruginosa MMA83 carries two copies of the blaNDM-1 gene in a novel genetic context. Antimicrob Agent Chemother 57:3405–3407

    Article 

    Google Scholar
     

  • Shen P, Yi M, Fu Y, Ruan Z, Du X, Yu Y, Xie X (2017) Detection of an Escherichia coli sequence type 167 strain with two tandem copies of blaNDM-1 in the chromosome. J Clin Microbiol 55:199–205

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang L, He H, Chen Q, Wang K, Lin Y, Li P, Li J, Liu X, Jia L, Song H (2022) Nosocomial outbreak of carbapenemase-producing Proteus mirabilis with two novel Salmonella genomic island 1 variants carrying different blaNDM–1 gene copies in China. Front Microbiol 12:800938

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hua X, Zhang L, Moran RA, Xu Q, Sun L, Van Schaik W, Yu Y (2020) Cointegration as a mechanism for the evolution of a KPC-producing multidrug resistance plasmid in Proteus mirabilis. Emerg Microb Infect 9:1206–1218

    Article 
    CAS 

    Google Scholar
     

  • Li Y, Liu Q, Qiu Y, Fang C, Zhou Y, She J, Chen H, Dai X, Zhang L (2022) Genomic characteristics of clinical multidrug-resistant Proteus isolates from a tertiary care hospital in southwest China. Front Microbiol 13:977356

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu R, Wang X, Muhamamd I, Wang Y, Dong W, Zhang H, Wang Y, Liu S, Gao Y, Kong L (2020) Biological characteristics and genetic analysis of a highly pathogenic Proteus mirabilis strain isolated from dogs in China. Front Vet Sci 7:589

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song Z, Lei C-W, Zuo L, Li C, Wang Y-L, Tian Y-M, Wang H-N (2022) Whole genome sequence of Proteus mirabilis ChSC1905 strain harbouring a new SXT/R391-family ICE. J Glob Antimicrob Resist 30:279–281

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link