Scientific Papers

Specific isoforms of the ubiquitin ligase gene WWP2 are targets of osteoarthritis genetic risk via a differentially methylated DNA sequence | Arthritis Research & Therapy


  • Swingler TE, Niu L, Smith P, Paddy P, Le L, Barter MJ et al. The function of microRNAs in cartilage and osteoarthritis. Clin Exp Rheumatol. 2019;37 Suppl 120:40 – 7.

  • Woods S, Charlton S, Cheung K, Hao Y, Soul J, Reynard LN, et al. microRNA-seq of cartilage reveals an overabundance of mir-140-3p which contains functional isomiRs. RNA. 2020;26:1575–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mokuda S, Nakamichi R, Matsuzaki T, Ito Y, Sato T, Miyata K, et al. Wwp2 maintains cartilage homeostasis through regulation of Adamts5. Nat Commun. 2019;10:2429.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyaki S, Sato T, Inoue A, Otsuki S, Iko Y, Yokoyama S, et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 2010;11:1173–85.

    Article 

    Google Scholar
     

  • Nakamura Y, Inloes JB, Katagiri T, Kobayashi T. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenic protein signaling. Mol Cell Biol. 2011;14:3019–28.

    Article 

    Google Scholar
     

  • Inui M, Mokuda S, Sato T, Tamano M, Takada S, Asahara H. Dissecting the roles of miR-140 and its host gene. Nat Cell Biol. 2018;5:516–8.

    Article 

    Google Scholar
     

  • van der Kraan PM. The changing role of TGFβ in healthy, ageing and osteoarthritic joints. Nat Rev Rheumatol. 2017;13:155–63.

    Article 
    PubMed 

    Google Scholar
     

  • Cherifi C, Monteagudo S, Lories RJ. Promising targets for therapy of osteoarthritis: a review on the wnt and TGF-β signaling pathways. Ther Adv Musculoskelet Dis. 2021;13:1759720X211006959.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chantry A. WWP2 ubiquitin ligase and its isoforms: new biological insight and promising disease targets. Cell Cycle. 2011;10:2437–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soond SM, Chantry A. How ubiquitination regulates the TGF-β signalling pathway: new insights and new players. BioEssays. 2011;33:749–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen W, Jiang X, Luo Z. WWP2: a multifunctional ubiquitin ligase gene. Pathol Oncol Res. 2014;20:799–803.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scheffner M, Kumar S. Mammalian HECT ubiquitin-protein ligases: biological and pathophysiological aspects. Biochim Biophys Acta. 2014;1843:61–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soond SM, Chantry A. Selective targeting of activating and inhibitory smads by distinct WWP2 ubiquitin ligase isoforms differentially modulates TGFβ signalling and EMT. Oncogene. 2011;30:2451–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wahl LC, Watt JE, Yim HTT, De Bourcier D, Tolchard J, Soond SM, et al. Smad7 binds differentially to individual and tandem WW3 and WW4 domains of WWP2 ubiquitin ligase isoforms. Int J Mol Sci. 2019;20:4682.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen H, Moreno-Moral A, Pesce F, Devapragash N, Mancini M, Heng EL, et al. WWP2 regulates pathological cardiac fibrosis by modulating SMAD2 signaling. Nat Commun. 2019;10:3616.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Styrkarsdottir U, Lund SH, Thorleifsson G, Zink F, Stefansson OA, Sigurdsson JK, et al. Meta-analysis of Icelandic and UK data sets identifies missense variants in SMO, IL11, COL11A1 and 13 more new loci associated with osteoarthritis. Nat Genet. 2018;50:1681–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tachmazidou I, Hatzikotoulas K, Southam L, Esparza-Gordillo J, Haberland V, Zheng J, et al. Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nat Genet. 2019;51:230–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boer CG, Hatzikotoulas K, Southam L, Stefánsdóttir L, Zhang Y, Coutinho de Almeida R, et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell. 2021;184:4784–818.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallagher MD, Chen-Plotkin AS. The post-GWAS era: from association to function. Am J Hum Genet. 2018;102:717–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boix CA, James BT, Park YP, Meuleman W, Kellis M. Regulatory genomic circuitry of human disease loci by integrative epigenomics. Nature. 2021;590:300–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith E, Shilatifard A. Enhancer biology and enhanceropathies. Nat Struct Mol Biol. 2014;21:210–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • den Hollander W, Pulyakhina I, Boer C, Bomer N, van der Breggen R, Arindrarto W, et al. Annotating transcriptional effects of genetic variants in disease-relevant tissue: transcriptome-wide allelic imbalance in osteoarthritic cartilage. Arthritis Rheumatol. 2019;71:561–70.

    Article 

    Google Scholar
     

  • 23, Rice SJ, Cheung K, Reynard LN, Loughlin J. Discovery and analysis of methylation quantitative trait loci (mQTLs) mapping to novel osteoarthritis genetic risk signals. Osteoarthritis Cartilage. 2019;27:1545–56.

    Article 

    Google Scholar
     

  • Aubourg G, Rice SJ, Bruce-Wootton P, Loughlin J. Genetics of osteoarthritis. Osteoarthritis Cartilage. 2022;30:636–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • den Hollander W, Ramos YFM, Bomer N, Elzinga S, van der Breggen R, Lakenberg N, et al. Transcriptional associations of osteoarthritis-mediated loss of epigenetic control in articular cartilage. Arthritis Rheumatol. 2015;8:2108–16.

    Article 

    Google Scholar
     

  • Hannon E, Gorrie-Stone TJ, Smart MC, Burrage J, Hughes A, Bao Y, et al. Leveraging DNA-methylation quantitative-trait loci to characterize the relationship between methylomic variation, gene expression, and complex traits. Am J Hum Genet. 2018;103:654–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pierce BL, Tong L, Argos M, Demanelis K, Jasmine F, Rakibuz-Zaman M, et al. Co-occurring expression and methylation QTLs allow detection of common causal variants and shared biological mechanisms. Nat Commun. 2018;9:804.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Héberlé E, Bardet AF. Sensitivity of transcription factors to DNA methylation. Essays Biochem. 2019;63:727–41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parker E, Hofer IM, Rice SJ, Earl L, Anjum S, Deehan D, et al. Multi-tissue epigenetic and gene expression analysis combined with epigenome modulation identifies RWDD2B as a target of osteoarthritis susceptibility. Arthritis Rheumatol. 2021;73:100–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rice SJ, Roberts JB, Tselepi M, Brumwell A, Falk J, Steven C, et al. Genetic and epigenetic fine-tuning of TGFB1 expression within the human osteoarthritic joint. Arthritis Rheumatol. 2021;73:1866–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kehayova YS, Watson E, Wilkinson JM, Loughlin J, Rice SJ. Genetic and epigenetic interplay within a COLGALT2 enhancer associated with osteoarthritis. Arthritis Rheumatol. 2021;73:1856–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brumwell A, Aubourg G, Hussain J, Parker E, Deehan DJ, Rice SJ, et al. Identification of TMEM129, encoding a ubiquitin-protein ligase, as an effector gene of osteoarthritis genetic risk. Arthritis Res Ther. 2022;24:189.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rice SJ, Brumwell A, Falk J, Kehayova YS, Casement J, Parker E, et al. Genetic risk of osteoarthritis operates during human skeletogenesis. Hum Mol Genet. 2023;32:2124–38.

    Article 
    PubMed 

    Google Scholar
     

  • Kehayova YS, Wilkinson JM, Rice SJ, Loughlin J. Mediation of the same epigenetic and transcriptional effect by independent osteoarthritis risk-conferring alleles on a shared target gene, COLGALT2. Arthritis Rheumatol. 2023;75:910–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee BT, Barber GP, Benet-Pagès A, Casper J, Clawson H, Diekhans M, et al. The UCSC genome browser database: 2022 update. Nucleic Acids Res. 2022;50:D1115–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roadmap Epigenomics Consortium. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317–30.

    Article 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Song F, Zhang B, Zhang L, Xu J, Kuang D, et al. The 3D genome browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions. Genome Biol. 2018;19:151.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I, Lemma RB, Turchi L, Blanc-Mathieu R, et al. JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2022;50:D165–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ajekigbe B, Cheung K, Xu Y, Skelton AJ, Panagiotopoulos A, Soul J, et al. Identification of long non-coding RNAs expressed in knee and hip osteoarthritic cartilage. Osteoarthritis Cartilage. 2019;27:694–702.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kokenyesi R, Tan L, Robbins JR, Goldring MB. Proteoglycan production by immortalized human chondrocyte cell lines cultured under conditions that promote expression of the differentiated phenotype. Arch Biochem Biophys. 2000;383:79–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2– DDCT method. Methods. 2001;25:402–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du P, Zhang X, Huang C-C, Jafari N, Kibbe WA, Hou L, et al. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics. 2010;11:587.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richard D, Liu Z, Cao J, Kiapour AM, Willen J, Yarlagadda S, et al. Evolutionary selection and constraint on human knee chondrocyte regulation impacts osteoarthritis risk. Cell. 2020;181:362–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richard D, Capellini TD. Shifting epigenetic contexts influence regulatory variation and disease risk. Aging. 2021;13:15699–749.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kreitmaier P, Suderman M, Southam L, Coutinho de Almeida R, Hatzikotoulas K, Meulenbelt I, et al. An epigenome-wide view of osteoarthritis in primary tissues. Am J Hum Genet. 2022;109:1255–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang F-J, Luo W, Lei G-H. Role of HIF-1a and HIF-2a in osteoarthritis. Joint Bone Spine. 2015;82:144–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okada K, Mori D, Makii Y, Nakamoto H, Murahashi Y, Yano F, et al. Hypoxia-inducible factor-1 alpha maintains mouse articular cartilage through suppression of NF-kB signaling. Sci Rep. 2020;10:5425.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuerlings M, Janssen GMC, Boone I, van Hoolwerff M, Rodriguez Ruiz A, Houtman E, et al. WWP2 confers risk to osteoarthritis by affecting cartilage matrix deposition via hypoxia associated genes. Osteoarthritis Cartilage. 2023;31:39–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watt JE, Hughes GR, Walpole S, Monaco S, Stephenson GR, Bulman Page PC, et al. Discovery of small molecule WWP2 ubiquitin ligase inhibitors. Chemistry. 2018;24:17677–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link