Scientific Papers

Efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine and prevalence of molecular markers of anti-malarial drug resistance in children in Togo in 2021 | Malaria Journal


  • WHO. World Malaria Report 2022. Geneva: World Health Organization; 2022.

  • WHO. Guidelines for malaria. Geneva: World Health Organization; 2022.

  • Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med. 2008;359:2619–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • WHO. Strategy to respond to antimalarial drug resistance in Africa. World Health Organization, 2022. https://www.who.int/publications/i/item/9789240060265 (Accessed on 15 Jan 2024).

  • Witkowski B, Amaratunga C, Khim N, Sreng S, Chim P, Kim S, et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect Dis. 2013;13:1043–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–5.

    Article 
    PubMed 

    Google Scholar
     

  • van der Pluijm RW, Imwong M, Chau NH, Hoa NT, Thuy-Nhien NT, Thanh NV, et al. Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study. Lancet Infect Dis. 2019;19:952–61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Straimer J, Gnädig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, et al. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015;347:428–31.

  • Uwimana A, Umulisa N, Venkatesan M, Svigel SS, Zhou Z, Munyaneza T, et al. Association of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in Rwanda: an open-label, single-arm, multicentre, therapeutic efficacy study. Lancet Infect Dis. 2021;21:1120–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balikagala B, Fukuda N, Ikeda M, Katuro OT, Tachibana SI, Yamauchi M, et al. Evidence of artemisinin-resistant malaria in Africa. N Engl J Med. 2021;385:1163–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fola AA, Feleke SM, Mohammed H, Brhane BG, Hennelly CM, Assefa A, et al. Plasmodium falciparum resistant to artemisinin and diagnostics have emerged in Ethiopia. Nat Microbiol. 2023;8:1911–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mihreteab S, Platon L, Berhane A, Barbara H. Stokes BH, Warsame M, et al. Increasing prevalence of artemisinin-resistant HRP2-negative malaria in Eritrea. N Engl J Med. 2023;389:1191–202.

  • Adam M, Nahzat S, Kakar Q, Assada M, Witkowski B, Tag Eldin Elshafie A, et al. Antimalarial drug efficacy and resistance in malaria-endemic countries in HANMAT-PIAM_net countries of the Eastern Mediterranean Region 2016–2020: clinical and genetic studies. Trop Med Int Health. 2023;28:817–29.

  • Witkowski B, Duru V, Khim N, Ross LS, Saintpierre B, Beghain J, et al. A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study. Lancet Infect Dis. 2017;17:174–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Price RN, Uhlemann AC, Brockman A, McGready R, Ashley E, Phaipun L, et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet. 2004;364:438–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amato R, Lim P, Miotto O, Amaratunga C, Dek D, Pearson RD, et al. Genetic markers associated with dihydroartemisinin-piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype-phenotype association study. Lancet Infect Dis. 2017;17:164–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phyo AP, Ashley EA, Anderson TJC, Bozdech Z, Carrara VI, Sriprawat K, et al. Declining efficacy of artemisinin combination therapy against P. falciparum malaria on the Thai-Myanmar Border (2003–2013): the role of parasite genetic factors. Clin Infect Dis. 2016;63:

  • Amaratunga C, Lim P, Suon S, Sreng S, Mao S, Sopha C, et al. Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect Dis. 2016;16:357–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thanh NV, Thuy-Nhien N, Tuyen NT, Tong NT, Nha-Ca NT, Dong LT, et al. Rapid decline in the susceptibility of Plasmodium falciparum to dihydroartemisinin-piperaquine in the south of Vietnam. Malar J. 2017;16:27.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phuc BQ, Rasmussen C, Duong TT, Dong LT, Loi MA, Ménard D, et al. Treatment failure of dihydroartemisinin/piperaquine for Plasmodium falciparum malaria. Vietnam Emerg Infect Dis. 2017;23:715–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carrara VI, Zwang J, Ashley EA, Price RN, Stepniewska K, Barends M, et al. Changes in the treatment responses to artesunate-mefloquine on the northwestern border of Thailand during 13 years of continuous deployment. PLoS ONE. 2009;4: e4551.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rasmussen C, Alonso P, Ringwald P. Current and emerging strategies to combat antimalarial resistance. Expert Rev Anti Infect Ther. 2021;20:353–72.

    Article 
    PubMed 

    Google Scholar
     

  • Menard D, Dondorp A. Antimalarial drug resistance: a threat to malaria elimination. Cold Spring Harb Perspect Med. 2017;7: a025619.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arya A, Kojom Foko LP, Chaudhry S, Sharma A, Singh V. Artemisinin-based combination therapy (ACT) and drug resistance molecular markers: A systematic review of clinical studies from two malaria endemic regions – India and sub-Saharan Africa. Int J Parasitol Drugs Drug Resist. 2021;15:43–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • WHO. Policy brief for the implementation of intermittent preventive treatment of malaria in pregnancy using sulfadoxine-pyrimethamine (IPTp-SP). Geneva, World Health Organization, 2013. https://www.who.int/publications/i/item/WHO-HTM-GMP-2014.4 Accessed on 6 September 2023.

  • WHO. Policy recommendation: seasonal malaria chemoprevention (SMC) for Plasmodium falciparum malaria control in highly seasonal transmission areas of the Sahel sub-region in Africa. Geneva: World Health Organization; 2012. https://apps.who.int/iris/handle/10665/337978. Accessed on 6 September 2023.

  • Plowe CV. The evolution of drug-resistant malaria. Trans R Soc Trop Med Hyg. 2009;103(Suppl 1):S11–4.

    Article 
    PubMed 

    Google Scholar
     

  • Kublin JG, Dzinjalamala FK, Kamwendo DD, Malkin EM, Cortese JF, Martino LM, et al. Molecular markers for failure of sulfadoxinepyrimethamine and chlorproguanil-dapsone treatment of Plasmodium falciparum malaria. J Infect Dis. 2002;185:380–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Happi CT, Gbotosho GO, Folarin OA, Akinboye DO, Yusuf BO, Ebong OO, et al. Polymorphisms in Plasmodium falciparum Pfdhfr and Pfdhps genes and age related in vivo sulfadoxine-pyrimethamine resistance in malaria-infected patients from Nigeria. Acta Trop. 2005;95:183–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrington W, Mutabingwa T, Muehlenbachs A, Sorensen B, Bolla M, Fried M, et al. Competitive facilitation of drug-resistant Plasmodium falciparum malaria parasites in pregnant women who receive preventive treatment. Proc Natl Acad Sci USA. 2009;106:9027–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chico RM, Cano J, Ariti C, Collier TJ, Chandramohan D, Roper C, et al. Influence of malaria transmission intensity and the 581G mutation on the efficacy of intermittent preventive treatment in pregnancy: systematic review and meta-analysis. Trop Med Int Health. 2015;20:1621–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gosling RD, Gesase S, Mosha JF, Carneiro I, Hashim R, Lemnge M, et al. Protective efficacy and safety of three antimalarial regimens for intermittent preventive treatment for malaria in infants: a randomised, double- blind, placebo-controlled trial. Lancet. 2009;374:1521–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ministère de la Santé, de l’Hygiène Publique et de l’Accès Universel aux Soins & Institut National de la Statistique et des Etudes Economiques et Démographiques. Enquête sur les indicateurs du paludisme au Togo (eipt) 2020. https://pnlptogo.org/page/enquete-sur-les-indicateurs-du-paludisme-au-togo-eipt-2020-38.

  • Dorkenoo MA, Barrette A, Agbo YM, Bogreau H, Kutoati S, Sodahlon YK, et al. Surveillance of the efficacy of artemether-lumefantrine and artesunate-amodiaquine for the treatment of uncomplicated Plasmodium falciparum among children under five in Togo, 2005–2009. Malar J. 2012;11:338.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ministère de la santé et de la protection sociale du Togo, “Politique nationale de lutte contre le paludisme”, aout 2016. https://pnlptogo.org/page/politique-nationale-de-lutte-contre-le-paludisme-40

  • Dorkenoo AM, Yehadji D, Agbo YM, Layibo Y, Agbeko F, Adjeloh P, et al. Therapeutic efficacy trial of artemisinin-based combination therapy for the treatment of uncomplicated malaria and investigation of mutations in k13 propeller domain in Togo, 2012–2013. Malar J. 2016;15:331.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • WHO. Methods for Surveillance of Antimalarial Drug Efficacy. Geneva: World Health Organization; 2009. https://www.who.int/malaria/publications/atoz/9789241597531/en/

  • WHO. Severe Malaria. Trop Med Int Health. 2014;19 Suppl1:1–131.

  • Zainabadi K, Nyunt MM, Plowe CV. An improved nucleic acid extraction method from dried blood spots for amplification of Plasmodium falciparum kelch13 for detection of artemisinin resistance. Malar J. 2019;18:192.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • WHO. Informal consultation on methodology to distinguish reinfection from recrudescence in high malaria transmission areas: report of a virtual meeting, 17–18 May 2021. Geneva: World Health Organization; 2021.

  • World Health Organization. Methods and techniques for clinical trials on antimalarial drug efficacy: genotyping to identify parasite populations: informal consultation organized by the Medicines for Malaria Venture and cosponsored by the World Health Organization, 29–31 May 2007, Amsterdam, The Netherlands. Geneva: World Health Organization; 2008. https://apps.who.int/iris/handle/10665/43824.

  • WHO. False-negative RDT results and implications of new reports of P. falciparum histidine-rich protein 2/3 gene deletions. Geneva: World Health Organization; 2017.

  • Issa MS, Warsame M, Mahamat MHT, Saleh IDM, Boulotigam K, Djimrassengar H, et al. Therapeutic efficacy of artesunate-amodiaquine and artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in Chad: clinical and genetic surveillance. Malar J. 2023;22:240.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abuaku B, Duah-Quashie NO, Quaye L, Matrevi SA, Quashie N, Gyasi A, et al. Therapeutic efficacy of artesunate-amodiaquine and artemether-lumefantrine combinations for uncomplicated malaria in 10 sentinel sites across Ghana: 2015–2017. Malar J. 2019;18:206.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kpemasse A, Dagnon F, Saliou R, Yarou Maye AS, Affoukou CD, Zoulkaneri A, et al. Efficacy of artemether-lumefantrine for the treatment of Plasmodium falciparum malaria in Bohicon and Kandi, Republic of Benin, 2018–2019. Am J Trop Med Hyg. 2021;105:670–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebenebe JC, Ntadom G, Ambe J, Wammanda R, Jiya N, Finomo F, et al. Efficacy of Artemisinin-based combination treatments of uncomplicated falciparum malaria in under-five-year-old Nigerian children ten years following adoption as first-line antimalarials. Am J Trop Med Hyg. 2018;99:649–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ibrahima I, Laminou IM, Adehossi E, Maman D, Boureima S, Harouna HK, et al. Étude de l’efficacité thérapeutique et de la tolérance de l’artéméther–luméfantrine et de l’artésunate–amodiaquine au Niger. Bull Soc Pathol Exot. 2020;113:17–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith SJ, Kamara ARY, Sahr F, Samai M, Swaray AS, Menard D, et al. Efficacy of artemisinin-based combination therapies and prevalence of molecular markers associated with artemisinin, piperaquine and sulfadoxine-pyrimethamine resistance in Sierra Leone. Acta Trop. 2018;185:363–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Konaté A, Barro-Kiki PCM, Angora KE, Bédia-Tanoh AV, Djohan V, Kassi KF, et al. Efficacy and tolerability of artesunate-amodiaquine versus artemether-lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria at two sentinel sites across Côte d’Ivoire. Ann Parasitol. 2018;64:49–57.

    PubMed 

    Google Scholar
     

  • Beavogui AH, Camara A, Delamou A, Diallo MS, Doumbouya A, Kourouma K, et al. Efficacy and safety of artesunate-amodiaquine and artemether-lumefantrine and prevalence of molecular markers associated with resistance, Guinea: an open-label two-arm randomised controlled trial. Malar J. 2020;19:223.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lingani M, Bonkian LN, Yerbanga I, Kazienga A, Valéa I, Sorgho H, et al. In vivo/ex vivo efficacy of artemether-lumefantrine and artesunate-amodiaquine as first-line treatment for uncomplicated falciparum malaria in children: an open label randomized controlled trial in Burkina Faso. Malar J. 2020;19:8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diallo MA, Yade MS, Ndiaye YD, Diallo I, Diongue K, Sy SA, et al. Efficacy and safety of artemisinin-based combination therapy and the implications of Pfkelch13 and Pfcoronin molecular markers in treatment failure in Senegal. Sci Rep. 2020;10:8907.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koko VS, Warsame M, Vonhm B, Jeuronlon MK, Menard D, Ma L, et al. Artesunate-amodiaquine and artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in Liberia: in vivo efficacy and frequency of molecular markers. Malar J. 2022;21:134.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riloha Rivas M, Warsame M, Mbá Andeme R, Nsue Esidang S, Ncogo PR, Phiri WP, et al. Therapeutic efficacy of artesunate-amodiaquine and artemether-lumefantrine and polymorphism in Plasmodium falciparum kelch13-propeller gene in Equatorial Guinea. Malar J. 2021;20:275.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niba PTN, Nji AM, Ali IM, Akam LF, Dongmo CH, Chedjou JPK, et al. Effectiveness and safety of artesunate-amodiaquine versus artemether-lumefantrine for home-based treatment of uncomplicated Plasmodium falciparum malaria among children 6–120 months in Yaoundé, Cameroon: a randomized trial. BMC Infect Dis. 2022;22:166.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nambei WS, Biago U, Balizou O, Pounguinza S, Moyen M, Ndoua C, et al. Surveillance de l’efficacité d’artéméther-luméfantrine dans le traitement du paludisme simple à Plasmodium falciparum par étude des mutations des gènes kelch 13 à Bangui, République Centrafricaine. Med Trop Sante Int. 2021;1:mtsibulletin.n1.2021.82.

  • Gansané A, Moriarty LF, Ménard D, Yerbanga I, Ouedraogo E, Sondo P, et al. Anti-malarial efficacy and resistance monitoring of artemether-lumefantrine and dihydroartemisinin-piperaquine shows inadequate efficacy in children in Burkina Faso, 2017–2018. Malar J. 2021;20:48.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dimbu PR, Horth R, Cândido ALM, Ferreira CM, Caquece F, Garcia LEA, et al. Continued low efficacy of artemether-lumefantrine in Angola in 2019. Antimicrob Agents Chemother. 2021;65:e01949-e2020.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moriarty LF, Nkoli PM, Likwela JL, Mulopo PM, Sompwe EM, Rika JM, et al. Therapeutic efficacy of artemisinin-based combination therapies in Democratic Republic of the Congo and investigation of molecular markers of antimalarial resistance. Am J Trop Med Hyg. 2021;105:1067–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rasmussen C, Ringwald P. Is there evidence of anti-malarial multidrug resistance in Burkina Faso? Malar J. 2021;20:320.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • White NJ. Drug resistance in malaria. Br Med Bull. 1998;54:703–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yobi DM, Kayiba NK, Mvumbi DM, Boreux R, Kabututu PZ, Akilimali PZ, et al. Biennial surveillance of Plasmodium falciparum anti-malarial drug resistance markers in Democratic Republic of Congo, 2017 and 2019. BMC Infect Dis. 2022;2:145.

    Article 

    Google Scholar
     

  • Berzosa P, Molina de la Fuente I, Ta-Tang TH, González V, García L, Rodríguez-Galet A, et al. Temporal evolution of the resistance genotypes of Plasmodium falciparum in isolates from Equatorial Guinea during 20 years (1999 to 2019). Malar J. 2021;20:463.

  • Mensah BA, Aydemir O, Myers-Hansen JL, Opoku M, Hathaway NJ, Marsh PW, et al. Antimalarial drug resistance profiling of Plasmodium falciparum infections in Ghana using molecular inversion probes and next-generation sequencing. Antimicrob Agents Chemother. 2020;64:e01423-e1519.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tumwebaze PK, Katairo T, Okitwi M, Byaruhanga O, Orena S, Asua V, et al. Drug susceptibility of Plasmodium falciparum in eastern Uganda: a longitudinal phenotypic and genotypic study. Lancet Microbe. 2021;2:e441–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dentinger CM, Rakotomanga TA, Rakotondrandriana A, Rakotoarisoa A, Rason MA, Moriarty LF, et al. Efficacy of artesunate-amodiaquine and artemether-lumefantrine for uncomplicated Plasmodium falciparum malaria in Madagascar, 2018. Malar J. 2021;20:432.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bwire GM, Ngasala B, Mikomangwa WP, Kilonzi M, Kamuhabwa AAR. Detection of mutations associated with artemisinin resistance at k13-propeller gene and a near complete return of chloroquine susceptible falciparum malaria in Southeast of Tanzania. Sci Rep. 2020;10:3500.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Liang X, Li J, Chen J, Huang H, Zheng Y, et al. Molecular surveillance of artemisinin-based combination therapies resistance in Plasmodium falciparum parasites from Bioko Island. Equatorial Guinea Microbiol Spectr. 2022;10: e0041322.

    Article 
    PubMed 

    Google Scholar
     

  • Braun V, Rempis E, Schnack A, Decker S, Rubaihayo J, Tumwesigye NM, et al. Lack of effect of intermittent preventive treatment for malaria in pregnancy and intense drug resistance in western Uganda. Malar J. 2015;14:372.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gutman J, Kalilani L, Taylor S, Zhou Z, Wiegand RE, Thwai KL, et al. The A581G mutation in the gene encoding Plasmodium falciparum dihydropteroate synthetase reduces the effectiveness of sulfadoxine-pyrimethamine preventive therapy in Malawian pregnant women. J Infect Dis. 2015;211:1997–2005.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Souleymane IM, Toure OA, Mbanga D, Clément KH, Berenger AA, Baba C, et al. Prevalence of sulfadoxine–pyrimethamine resistance-associated mutations in Pfdhfr and Pfdhps gene of Plasmodium falciparum isolates collected in Pala west region of Chad. Afr J Parasitol Res. 2018;5:271–7.


    Google Scholar
     

  • Naidoo I, Roper C. Mapping “partially resistant”, “fully resistant”, and “super resistant” malaria. Trends Parasitol. 2013;29:505–15.

    Article 
    PubMed 

    Google Scholar
     

  • Dicko A, Sagara I, Djimdé AA, Touré SO, Traore M, Dama S, et al. Molecular markers of resistance to sulphadoxine-pyrimethamine one year after implementation of intermittent preventive treatment of malaria in infants in Mali. Malar J. 2010;9:9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afutu LL, Boampong JN, Quashie NB. High prevalence of molecular markers of Plasmodium falciparum resistance to sulphadoxine-pyrimethamine in parts of Ghana: a threat to IPTp-SP? J Trop Pediatr. 2021;67:fmaa120.

  • Das S, Kérah-Hinzoumbé C, Kebféné M, Srisutham S, Nagorngar TY, Saralamba N, et al. Molecular surveillance for operationally relevant genetic polymorphisms in Plasmodium falciparum in Southern Chad, 2016–2017. Malar J. 2022;21:83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • L’Episcopia M, Doderer-Lang C, Perrotti E, Priuli GB, Cavallari S, Guidetti C, et al. Polymorphism analysis of drug resistance markers in Plasmodium falciparum isolates from Benin. Acta Trop. 2023;245: 106975.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tarama CW, Soré H, Siribié M, Débé S, Kinda R, Ganou A, et al. Plasmodium falciparum drug resistance-associated mutations in isolates fromDOIildren living in endemic areas of Burkina Faso. Malar J. 2023;22:213.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tumwebaze P, Tukwasibwe S, Taylor A, Conrad M, Ruhamyankaka E, Asua V, et al. Changing antimalarial drug resistance patterns identified by surveillance at three sites in Uganda. J Infect Dis. 2017;215:631–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Asua V, Conrad MD, Aydemir O, Duvalsaint M, Legac J, Duarte E, et al. Changing prevalence of potential mediators of aminoquinoline, antifolate, and artemisinin resistance across Uganda. J Infect Dis. 2021;223:985–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bwire GM, Mikomangwa WP, Kilonzi M. Occurrence of septuple and elevated Pfdhfr-Pfdhps quintuple mutations in a general population threatens the use of sulfadoxine-pyrimethamine for malaria prevention during pregnancy in eastern-coast of Tanzania. BMC Infect Dis. 2020;20:530.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pacheco MA, Schneider KA, Cheng Q, Munde EO, Ndege C, Onyango C, et al. Changes in the frequencies of Plasmodium falciparum dhps and dhfr drug-resistant mutations in children from Western Kenya from 2005 to 2018: the rise of Pfdhps S436H. Malar J. 2020;19:378.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gikunju SW, Agola EL, Ondondo RO, Kinyua J, Kimani F, LaBeaud AD, et al. Prevalence of pfdhfr and Pfdhps mutations in Plasmodium falciparum associated with drug resistance among pregnant women receiving IPTp-SP at Msambweni County Referral Hospital, Kwale County. Kenya Malar J. 2020;19:190.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alemayehu GS, Blackburn K, Lopez K, Cambel Dieng C, Lo E, Janies D, Golassa L. Detection of high prevalence of Plasmodium falciparum histidine-rich protein 2/3 gene deletions in Assosa zone, Ethiopia: implication for malaria diagnosis. Malar J. 2021;20:109.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Golassa L, Messele A, Amambua-Ngwa A, Swedberg G. High prevalence and extended deletions in Plasmodium falciparum hrp2/3 genomic loci in Ethiopia. PLoS ONE. 2020;15: e0241807.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menendez C, Fleming AF, Alonso PL. Malaria-related anaemia. Parasitol Today. 2000;16:469–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stoltzfus RJ, Chwaya HM, Montresor A, Albonico M, Savioli L, Tielsch JM. Malaria, hookworms and recent fever are related to anemia and iron status indicators in 0- to 5-y old Zanzibari children and these relationships change with age. J Nutr. 2000;130:1724–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nussenblatt V, Semba RD. Micronutrient malnutrition and the pathogenesis of malarial anemia. Acta Trop. 2002;82:321–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Björkman A. Malaria associated anaemia, drug resistance and antimalarial combination therapy. Int J Parasitol. 2002;32:1637–43.

    Article 
    PubMed 

    Google Scholar
     



  • Source link