Scientific Papers

Synaptopodin is required for long-term depression at Schaffer collateral-CA1 synapses | Molecular Brain

Description of Image

  • Mundel P, Heid HW, Mundel TM, Krüger M, Reiser J, Kriz W. Synaptopodin: an actin-associated protein in telencephalic dendrites and renal podocytes. J Cell Biol. 1997;139:193–204.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Czarnecki K, Haas CA, Bas Orth C, Deller T, Frotscher M. Postnatal development of synaptopodin expression in the rodent hippocampus. J Comp Neurol. 2005;490:133–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verbich D, Becker D, Vlachos A, Mundel P, Deller T, McKinney RA. Rewiring neuronal microcircuits of the brain via spine head protrusions–a role for synaptopodin and intracellular calcium stores. Acta Neuropathol Commun. 2016;4:38.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vlachos A, Ikenberg B, Lenz M, Becker D, Reifenberg K, Bas-Orth C, et al. Synaptopodin regulates denervation-induced homeostatic synaptic plasticity. Proc Natl Acad Sci U S A. 2013;110:8242–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jedlicka P, Vlachos A, Schwarzacher SW, Deller T. A role for the spine apparatus in LTP and spatial learning. Behav Brain Res. 2008;192:12–9.

    Article 
    PubMed 

    Google Scholar
     

  • Deller T, Korte M, Chabanis S, Drakew A, Schwegler H, Stefani GG, et al. Synaptopodin-deficient mice lack a spine apparatus and show deficits in synaptic plasticity. Proc Natl Acad Sci. 2003;100:10494–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vlachos A, Korkotian E, Schonfeld E, Copanaki E, Deller T, Segal M. Synaptopodin regulates plasticity of dendritic spines in hippocampal neurons. J Neurosci. 2009;29:1017–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Segal M, Vlachos A, Korkotian E. The spine apparatus, Synaptopodin, and dendritic spine plasticity. Neuroscientist. 2010;16:125–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jedlicka P, Deller T. Understanding the role of synaptopodin and the spine apparatus in hebbian synaptic plasticity– new perspectives and the need for computational modeling. Neurobiol Learn Mem. 2017;138:21–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Speranza L, Inglebert Y, De Sanctis C, Wu PY, Kalinowska M, McKinney RA, et al. Stabilization of spine synaptopodin by mGluR1 is required for mGluR-LTD. J Neurosci. 2022;42:1666–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu PY, Ji L, De Sanctis C, Francesconi A, Inglebert Y, McKinney RA. Loss of synaptopodin impairs mGluR5 and protein synthesis-dependent mGluR-LTD at CA3-CA1 synapses. PNAS Nexus. 2024;3:pgae062. https://doi.org/10.1093/pnasnexus/pgae062

  • Dudek SM, Bear MF. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci. 1992;89:4363–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malenka RC, Bear MF. LTP and LTD. Neuron. 2004;44:5–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holbro N, Grunditz Å, Oertner TG. Differential distribution of endoplasmic reticulum controls metabotropic signaling and plasticity at hippocampal synapses. Proc Natl Acad Sci. 2009;106:15055–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X-l, Poschel B, Faul C, Upreti C, Stanton PK, Mundel P. Essential role for Synaptopodin in dendritic spine plasticity of the developing Hippocampus. J Neurosci. 2013;33:12510–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dan Y, Poo M-M. Spike timing-dependent plasticity: from synapse to Perception. Physiol Rev. 2006;86:1033–48.

    Article 
    PubMed 

    Google Scholar
     

  • Bi G, Poo M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci. 1998;18:10464–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Debanne D, Gähwiler BH, Thompson SM. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol. 1998;507:237–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Debanne D, Gähwiler BH, Thompson SM. Cooperative interactions in the induction of long-term potentiation and depression of synaptic excitation between hippocampal CA3-CA1 cell pairs in vitro. Proc Natl Acad Sci U S A. 1996;93:11225–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Debanne D, Guérineau NC, Gähwiler BH, Thompson SM. Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release. J Physiol. 1996;491:163–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Markram H, Lübke J, Frotscher M, Sakmann B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science. 1997;275:213–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andrade-Talavera Y, Duque-Feria P, Paulsen O, Rodríguez-Moreno A. Presynaptic spike timing-dependent long-term depression in the mouse Hippocampus. Cereb Cortex N Y N 1991. 2016;26:3637–54.


    Google Scholar
     

  • Inglebert Y, Debanne D. Calcium and Spike Timing-Dependent Plasticity. Front Cell Neurosci. 2021;15:727336.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Debanne D, Inglebert Y. Spike timing-dependent plasticity and memory. Curr Opin Neurobiol. 2023;80:102707.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feldman DE. The spike-timing dependence of plasticity. Neuron. 2012;75:556–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inglebert Y, Aljadeff J, Brunel N, Debanne D. Synaptic plasticity rules with physiological calcium levels. Proc Natl Acad Sci U S A. 2020;117:33639–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wittenberg GM. Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse. J Neurosci. 2006;26:6610–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henley JM, Wilkinson KA. Synaptic AMPA receptor composition in development, plasticity and disease. Nat Rev Neurosci. 2016;17:337–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci. 2013;14:383–400.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mockett B, Coussens C, Abraham WC. NMDA receptor-mediated metaplasticity during the induction of long-term depression by low-frequency stimulation: priming of LTD during low frequency stimulation. Eur J Neurosci. 2002;15:1819–26.

    Article 
    PubMed 

    Google Scholar
     

  • Petersen CCH, Malenka RC, Nicoll RA, Hopfield JJ. All-or-none potentiation at CA3-CA1 synapses. Proc Natl Acad Sci. 1998;95:4732–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Connor DH, Wittenberg GM, Wang SS-H. Graded bidirectional synaptic plasticity is composed of switch-like unitary events. Proc Natl Acad Sci. 2005;102:9679–84.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Froemke RC, Tsay IA, Raad M, Long JD, Dan Y. Contribution of individual spikes in Burst-Induced Long-Term synaptic modification. J Neurophysiol. 2006;95:1620–9.

    Article 
    PubMed 

    Google Scholar
     

  • Forsberg M, Seth H, Björefeldt A, Lyckenvik T, Andersson M, Wasling P, et al. Ionized calcium in human cerebrospinal fluid and its influence on intrinsic and synaptic excitability of hippocampal pyramidal neurons in the rat. J Neurochem. 2019;149:452–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jedlicka P, Schwarzacher SW, Winkels R, Kienzler F, Frotscher M, Bramham CR, et al. Impairment of in vivo theta-burst long-term potentiation and network excitability in the dentate gyrus of synaptopodin-deficient mice lacking the spine apparatus and the cisternal organelle. Hippocampus. 2009;19:130–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aloni E, Verbitsky S, Kushnireva L, Korkotian E, Segal M. Increased excitability of hippocampal neurons in mature synaptopodin-knockout mice. Brain Struct Funct. 2021;226:2459–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee H-K, Kirkwood A. Mechanisms of homeostatic synaptic plasticity in vivo. Front Cell Neurosci. 2019;13:520.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abraham WC. Metaplasticity: tuning synapses and networks for plasticity. Nat Rev Neurosci. 2008;9:387–387.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lenz M, Eichler A, Kruse P, Muellerleile J, Deller T, Jedlicka P, et al. All-trans retinoic acid induces synaptopodin-dependent metaplasticity in mouse dentate granule cells. eLife. 2021;10:e71983.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maggio N, Vlachos A. Tumor necrosis factor (TNF) modulates synaptic plasticity in a concentration-dependent manner through intracellular calcium stores. J Mol Med. 2018;96:1039–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dubes S, Soula A, Benquet S, Tessier B, Poujol C, Favereaux A, et al. Mir-124‐dependent tagging of synapses by synaptopodin enables input‐specific homeostatic plasticity. EMBO J. 2022;41:e109012.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nevian T, Sakmann B. Spine Ca2 + signaling in spike-timing-dependent plasticity. J Neurosci. 2006;26:11001–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang S-N, Tang Y-G, Zucker RS. Selective induction of LTP and LTD by postsynaptic [Ca 2+ ] i Elevation. J Neurophysiol. 1999;81:781–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lisman J. A mechanism for the Hebb and the anti-hebb processes underlying learning and memory. Proc Natl Acad Sci. 1989;86:9574–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korkotian E, Segal M. Synaptopodin regulates release of calcium from stores in dendritic spines of cultured hippocampal neurons: Synaptopodin regulates calcium release. J Physiol. 2011;589:5987–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Graupner M, Brunel N. Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location. Proc Natl Acad Sci U S A. 2012;109:3991–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pike FG, Meredith RM, Olding AWA, Paulsen O. Postsynaptic bursting is essential for ‘Hebbian’ induction of associative long-term potentiation at excitatory synapses in rat hippocampus. J Physiol. 1999;518:571–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuenzalida M, Fernández de Sevilla D, Couve A, Buño W. Role of AMPA and NMDA receptors and back-propagating action potentials in spike timing-dependent plasticity. J Neurophysiol. 2010;103:47–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holbro N, Grunditz A, Wiegert JS, Oertner TG. AMPA receptors gate spine ca(2+) transients and spike-timing-dependent potentiation. Proc Natl Acad Sci U S A. 2010;107:15975–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Artola A, Bröcher S, Singer W. Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature. 1990;347:69–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Galanis C, Fellenz M, Becker D, Bold C, Lichtenthaler SF, Müller UC, et al. Amyloid-Beta mediates homeostatic synaptic plasticity. J Neurosci. 2021;41:5157–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tazerart S, Mitchell DE, Miranda-Rottmann S, Araya R. A spike-timing-dependent plasticity rule for dendritic spines. Nat Commun. 2020;11:4276.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korkotian E, Frotscher M, Segal M. Synaptopodin regulates spine plasticity: mediation by Calcium stores. J Neurosci. 2014;34:11641–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bas Orth C, Schultz C, Müller CM, Frotscher M, Deller T. Loss of the cisternal organelle in the axon initial segment of cortical neurons in synaptopodin-deficient mice. J Comp Neurol. 2007;504:441–9.

    Article 
    PubMed 

    Google Scholar
     

  • Yap K, Drakew A, Smilovic D, Rietsche M, Paul MH, Vuksic M, et al. The actin-modulating protein synaptopodin mediates long-term survival of dendritic spines. eLife. 2020;9:e62944 https://doi.org/10.7554/eLife.62944

  • Description of Image

    Source link