Scientific Papers

MicroRNA-21a-5p inhibition alleviates systemic sclerosis by targeting STAT3 signaling | Journal of Translational Medicine

Description of Image

  • Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N Engl J Med. 2009;360:1989–2003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bairkdar M, Rossides M, Westerlind H, Hesselstrand R, Arkema EV, Holmqvist M. Incidence and prevalence of systemic sclerosis globally: a comprehensive systematic review and meta-analysis. Rheumatology. 2021;60:3121–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morrisroe K, Stevens W, Sahhar J, Ngian GS, Ferdowsi N, Hansen D, Patel S, Hill CL, Roddy J, Walker J, et al. The clinical and economic burden of systemic sclerosis related interstitial lung disease. Rheumatology. 2020;59:1878–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Denton CP, Khanna D. Systemic sclerosis. Lancet. 2017;390:1685–99.

    Article 
    PubMed 

    Google Scholar
     

  • Pattanaik D, Brown M, Postlethwaite BC, Postlethwaite AE. Pathogenesis of systemic sclerosis. Front Immunol. 2015;6:272.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allanore Y, Simms R, Distler O, Trojanowska M, Pope J, Denton CP, Varga J. Systemic sclerosis. Nat Rev Dis Primers. 2015;1:15002.

    Article 
    PubMed 

    Google Scholar
     

  • Lafyatis R. Transforming growth factor beta–at the centre of systemic sclerosis. Nat Rev Rheumatol. 2014;10:706–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu HH, Chen DQ, Wang YN, Feng YL, Cao G, Vaziri ND, Zhao YY. New insights into TGF-beta/Smad signaling in tissue fibrosis. Chem Biol Interact. 2018;292:76–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seeley JJ, Baker RG, Mohamed G, Bruns T, Hayden MS, Deshmukh SD, Freedberg DE, Ghosh S. Induction of innate immune memory via microRNA targeting of chromatin remodelling factors. Nature. 2018;559:114–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alevizos I, Illei GG. MicroRNAs as biomarkers in rheumatic diseases. Nat Rev Rheumatol. 2010;6:391–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Broen JC, Radstake TR, Rossato M. The role of genetics and epigenetics in the pathogenesis of systemic sclerosis. Nat Rev Rheumatol. 2014;10:671–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Affandi AJ, Radstake TR, Marut W. Update on biomarkers in systemic sclerosis: tools for diagnosis and treatment. Semin Immunopathol. 2015;37:475–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Wu H, Zhao M, Lu Q. Meta-analysis of differentially expressed microRNAs in systemic sclerosis. Int J Rheum Dis. 2020;23:1297–304.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16:203–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ho PTB, Clark IM, Le LTT. MicroRNA-based diagnosis and therapy. Int J Mol Sci. 2022;23:7167.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garchow BG, Bartulos Encinas O, Leung YT, Tsao PY, Eisenberg RA, Caricchio R, Obad S, Petri A, Kauppinen S, Kiriakidou M. Silencing of microRNA-21 in vivo ameliorates autoimmune splenomegaly in lupus mice. EMBO Mol Med. 2011;3:605–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie J, Wu W, Zheng L, Lin X, Tai Y, Wang Y, Wang L. Roles of MicroRNA-21 in skin wound healing: a comprehensive review. Front Pharmacol. 2022;13: 828627.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou B, Zuo XX, Li YS, Gao SM, Dai XD, Zhu HL, Luo H. Integration of microRNA and mRNA expression profiles in the skin of systemic sclerosis patients. Sci Rep. 2017;7:42899.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu H, Luo H, Li Y, Zhou Y, Jiang Y, Chai J, Xiao X, You Y, Zuo X. MicroRNA-21 in scleroderma fibrosis and its function in TGF-beta-regulated fibrosis-related genes expression. J Clin Immunol. 2013;33:1100–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vandewalle V, Essaghir A, Bollaert E, Lenglez S, Graux C, Schoemans H, Saussoy P, Michaux L, Valk PJM, Demoulin JB, Havelange V. miR-15a-5p and miR-21-5p contribute to chemoresistance in cytogenetically normal acute myeloid leukaemia by targeting PDCD4, ARL2 and BTG2. J Cell Mol Med. 2021;25:575–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morente-Lopez M, Mato-Basalo R, Lucio-Gallego S, Silva-Fernandez L, Gonzalez-Rodriguez A, De Toro FJ, Fafian-Labora JA, Arufe MC. Therapy free of cells vs human mesenchymal stem cells from umbilical cord stroma to treat the inflammation in OA. Cell Mol Life Sci. 2022;79:557.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moon J, Lee SY, Choi JW, Lee AR, Yoo JH, Moon SJ, Park SH, Cho ML. Metformin ameliorates scleroderma via inhibiting Th17 cells and reducing mTOR-STAT3 signaling in skin fibroblasts. J Transl Med. 2021;19:192.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okamoto Y, Hasegawa M, Matsushita T, Hamaguchi Y, Huu DL, Iwakura Y, Fujimoto M, Takehara K. Potential roles of interleukin-17A in the development of skin fibrosis in mice. Arthr Rheum. 2012;64:3726–35.

    Article 
    CAS 

    Google Scholar
     

  • Yoshizaki A, Iwata Y, Komura K, Ogawa F, Hara T, Muroi E, Takenaka M, Shimizu K, Hasegawa M, Fujimoto M, et al. CD19 regulates skin and lung fibrosis via toll-like receptor signaling in a model of bleomycin-induced scleroderma. Am J Pathol. 2008;172:1650–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park JS, Park HJ, Park YS, Lee SM, Yim JJ, Yoo CG, Han SK, Kim YW. Clinical significance of mTOR, ZEB1, ROCK1 expression in lung tissues of pulmonary fibrosis patients. BMC Pulm Med. 2014;14:168.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mori T, Miyamoto T, Yoshida H, Asakawa M, Kawasumi M, Kobayashi T, Morioka H, Chiba K, Toyama Y, Yoshimura A. IL-1beta and TNFalpha-initiated IL-6-STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. Int Immunol. 2011;23:701–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Simone V, Franze E, Ronchetti G, Colantoni A, Fantini MC, Di Fusco D, Sica GS, Sileri P, MacDonald TT, Pallone F, et al. Th17-type cytokines, IL-6 and TNF-alpha synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene. 2015;34:3493–503.

    Article 
    PubMed 

    Google Scholar
     

  • Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med. 2009;206:1457–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakraborty D, Sumova B, Mallano T, Chen CW, Distler A, Bergmann C, Ludolph I, Horch RE, Gelse K, Ramming A, et al. Activation of STAT3 integrates common profibrotic pathways to promote fibroblast activation and tissue fibrosis. Nat Commun. 2017;8:1130.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones CE, Sharick JT, Colbert SE, Shukla VC, Zent JM, Ostrowski MC, Ghadiali SN, Sizemore ST, Leight JL. Pten regulates collagen fibrillogenesis by fibroblasts through SPARC. PLoS ONE. 2021;16: e0245653.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Wang X, Yang D, Xiao Z, Chen X. MicroRNA-21 affects proliferation and apoptosis by regulating expression of PTEN in human keloid fibroblasts. Plast Reconstr Surg. 2014;134:561e–73e.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu H, Li Y, Qu S, Luo H, Zhou Y, Wang Y, Zhao H, You Y, Xiao X, Zuo X. MicroRNA expression abnormalities in limited cutaneous scleroderma and diffuse cutaneous scleroderma. J Clin Immunol. 2012;32:514–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jafarinejad-Farsangi S, Farazmand A, Gharibdoost F, Karimizadeh E, Noorbakhsh F, Faridani H, Mahmoudi M, Jamshidi AR. Inhibition of MicroRNA-21 induces apoptosis in dermal fibroblasts of patients with systemic sclerosis. Int J Dermatol. 2016;55:1259–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Li Y, Li N, Teng W, Wang M, Zhang Y, Xiao Z. TGF-beta1 promotes scar fibroblasts proliferation and transdifferentiation via up-regulating MicroRNA-21. Sci Rep. 2016;6:32231.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Qiu Y, Shi NW, Zhao JN, Wang YC, Jiang H, Qian HB. microRNA-21 mediates the TGF-beta1-induced migration of keratinocytes via targeting PTEN. Eur Rev Med Pharmacol Sci. 2016;20:3748–59.

    CAS 
    PubMed 

    Google Scholar
     

  • Pedroza M, To S, Assassi S, Wu M, Tweardy D, Agarwal SK. Role of STAT3 in skin fibrosis and transforming growth factor beta signalling. Rheumatology. 2018;57:1838–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dees C, Tomcik M, Palumbo-Zerr K, Distler A, Beyer C, Lang V, Horn A, Zerr P, Zwerina J, Gelse K, et al. JAK-2 as a novel mediator of the profibrotic effects of transforming growth factor beta in systemic sclerosis. Arthritis Rheum. 2012;64:3006–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Reilly S, Ciechomska M, Cant R, van Laar JM. Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-beta (TGF-beta) signaling promoting SMAD3 activation and fibrosis via Gremlin protein. J Biol Chem. 2014;289:9952–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao W, Shi P, Ge JJ. miR-21 enhances cardiac fibrotic remodeling and fibroblast proliferation via CADM1/STAT3 pathway. BMC Cardiovasc Disord. 2017;17:88.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell. 2010;39:493–506.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Description of Image

    Source link