Scientific Papers

Harnessing alkaline-pH regulatable promoters for efficient methanol-free expression of enzymes of industrial interest in Komagataella Phaffii | Microbial Cell Factories

Description of Image

  • Barone GD, Emmerstorfer-Augustin A, Biundo A, Pisano I, Coccetti P, Mapelli V et al. Industrial production of proteins with Pichia pastoris—komagataella phaffii. Biomolecules. 2023;13.

  • Love KR, Dalvie NC, Love JC. The yeast stands alone: the future of protein biologic production. Curr Opin Biotechnol. 2018;53:50–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vijayakumar VE, Venkataraman K. A systematic review of the potential of Pichia pastoris (Komagataella Phaffii) as an alternative host for Biologics Production. Mol Biotechnol. 2023.

  • Türkanoğlu Özçelik A, Yılmaz S, Inan M. Pichia pastoris promoters. Methods in Molecular Biology [Internet]. Humana Press Inc.; 2019 [cited 2020 Nov 27]. p. 97–112. Available from: https://pubmed.ncbi.nlm.nih.gov/30737736/

  • Inan M, Meagher MM. The effect of ethanol and acetate on protein expression in Pichia pastoris. J Biosci Bioeng. 2001;92:337–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tschopp JF, Brust PF, Cregg JM, Stillman CA, Gingeras TR. Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucleic Acids Res. 1987;15:3859–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vanz AL, Lünsdorf H, Adnan A, Nimtz M, Gurramkonda C, Khanna N et al. Physiological response of Pichia pastoris GS115 to methanol-induced high level production of the Hepatitis B surface antigen: catabolic adaptation, stress responses, and autophagic processes. Microb Cell Fact. 2012;11.

  • Jia L, Li T, Wu Y, Wu C, Li H, Huang A. Enhanced human lysozyme production by Pichia pastoris via periodic glycerol and dissolved oxygen concentrations control. Appl Microbiol Biotechnol. 2021;105:1041–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Couderc R, Baratti J. Oxidation of methanol by the yeast, Pichia pastoris. Purification and properties of the alcohol oxidase. Agric Biol Chem. 1980;44:2279–89.

    CAS 

    Google Scholar
     

  • Zavec D, Gasser B, Mattanovich D. Characterization of methanol utilization negative Pichia pastoris for secreted protein production: new cultivation strategies for current and future applications. Biotechnol Bioeng. 2020;117:1394–405.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooney CL, Wang DIC, Mateles RI. Measurement of heat evolution and correlation with oxygen consumption during microbial growth. Biotechnol Bioeng. 1969;11:269–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stadlmayr G, Mecklenbräuker A, Rothmüller M, Maurer M, Sauer M, Mattanovich D, et al. Identification and characterisation of novel Pichia pastoris promoters for heterologous protein production. J Biotechnol. 2010;150:519–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prielhofer R, Reichinger M, Wagner N, Claes K, Kiziak C, Gasser B et al. Superior protein titers in half the fermentation time: Promoter and process engineering for the glucose-regulated GTH1 promoter of Pichia pastoris. Biotechnol Bioeng [Internet]. 2018 [cited 2024 Mar 1];115:2479–88. Available from: https://pubmed.ncbi.nlm.nih.gov/30016537/

  • Flores-Villegas M, Rebnegger C, Kowarz V, Prielhofer R, Mattanovich D, Gasser B. Systematic sequence engineering enhances the induction strength of the glucose-regulated GTH1 promoter of Komagataella phaffii. Nucleic Acids Res [Internet]. 2023 [cited 2024 Feb 27];51:11358–74. Available from: https://pubmed.ncbi.nlm.nih.gov/37791854/

  • Vogl T, Fischer JE, Hyden P, Wasmayer R, Sturmberger L, Glieder A. Orthologous promoters from related methylotrophic yeasts surpass expression of endogenous promoters of Pichia pastoris. AMB Express [Internet]. 2020 [cited 2024 Feb 27];10. Available from: https://pubmed.ncbi.nlm.nih.gov/32100120/

  • Vogl T, Sturmberger L, Fauland PC, Hyden P, Fischer JE, Schmid C, et al. Methanol independent induction in Pichia pastoris by simple derepressed overexpression of single transcription factors. Biotechnol Bioeng. 2018;115:1037–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Wang X, Shi L, Qi F, Zhang P, Zhang Y et al. Methanol-Independent Protein Expression by AOX1 Promoter with trans-Acting Elements Engineering and Glucose-Glycerol-Shift Induction in Pichia pastoris. Sci Rep [Internet]. 2017 [cited 2024 Feb 27];7. Available from: https://pubmed.ncbi.nlm.nih.gov/28150747/

  • Selvig K, Alspaugh JA. pH response pathways in Fungi: adapting to host-derived and environmental signals. Mycobiology. 2011;39:249–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ariño J. Integrative responses to high pH stress in S. Cerevisiae. OMICS. 2010;14:517–23.

    Article 
    PubMed 

    Google Scholar
     

  • Serra-Cardona A, Canadell D, Ariño J. Coordinate responses to alkaline pH stress in budding yeast. Microb Cell. 2015. p. 182–96.

  • Maeda T. The signaling mechanism of ambient pH sensing and adaptation in yeast and fungi. FEBSJ. 2012;279:1407–13.

    Article 
    CAS 

    Google Scholar
     

  • Cornet M, Gaillardin C. pH signaling in human fungal pathogens: a new target for antifungal strategies. Eukaryot Cell. 2014;13:342–52.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albacar M, Zekhnini A, Pérez-Valle J, Martínez JL, Casamayor A, Ariño J. Transcriptomic profiling of the yeast Komagataella phaffii in response to environmental alkalinization. Microb Cell Fact. 2023;22.

  • Lei XG, Weaver JD, Mullaney E, Ullah AH, Azain MJ. Phytase, a new life for an old enzyme. Annu Rev Anim Biosci. 2013;1:283–309.

    Article 
    PubMed 

    Google Scholar
     

  • Rubin G. The nucleotide sequence of Saccharomyces cerevisiae 5.8 S ribosomal ribonucleic acid. J Biol Chem. 1973;248:3860–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Green MR, Sambrook J. Molecular cloning: a laboratory Manual. 4th ed. New York: Cold Spring Harbor Laboratory Press, NY; 2012.


    Google Scholar
     

  • Lin-Cereghino J, Wong WW, Xiong S, Giang W, Luong LT, Vu J, et al. Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. Biotechniques. 2005;38:44–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang J, Nie L, Chen B, Liu Y, Kong Y, Wang H, et al. Hygromycin-resistance vectors for gene expression in Pichia pastoris. Yeast. 2014;31:115–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aw R, Polizzi KM. Liquid PTVA: a faster and cheaper alternative for generating multi-copy clones in Pichia pastoris. Microb Cell Fact. 2016;15:29.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abad S, Kitz K, Hörmann A, Schreiner U, Hartner FS, Glieder A. Real-time PCR-based determination of gene copy numbers in Pichia pastoris. Biotechnol J [Internet]. 2010 [cited 2024 Feb 22];5:413–20. Available from: https://pubmed.ncbi.nlm.nih.gov/20349461/

  • Sturmberger L, Chappell T, Geier M, Krainer F, Day KJ, Vide U et al. Refined Pichia pastoris reference genome sequence. J Biotechnol [Internet]. 2016;235:121–31. Available from: https://pubmed.ncbi.nlm.nih.gov/27084056/

  • Santana-Garcia W, Castro-Mondragon JA, Padilla-Gálvez M, Nguyen NTT, Elizondo-Salas A, Ksouri N et al. RSAT 2022: regulatory sequence analysis tools. Nucleic Acids Res [Internet]. 2022 [cited 2023 Feb 25];50:W670–6. Available from: https://pubmed.ncbi.nlm.nih.gov/35544234/

  • Fornes O, Castro-Mondragon JA, Khan A, Van Der Lee R, Zhang X, Richmond PA, et al. JASPAR 2020: update of the open-Access database of transcription factor binding profiles. Nucleic Acids Res. 2020;48:D87–92.

    CAS 
    PubMed 

    Google Scholar
     

  • Ahn J, Hong J, Park M, Lee H, Lee E, Kim C, et al. Phosphate-responsive promoter of a Pichia pastoris sodium phosphate symporter. Appl Environ Microbiol. 2009;75:3528–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abd El-Hack ME, Alagawany M, Arif M, Emam M, Saeed M, Arain MA, et al. The uses of microbial phytase as a feed additive in poultry nutrition – a review. Annals Anim Sci. 2018;18:639–58.

    Article 

    Google Scholar
     

  • Polaris Market Research. Animal Feed Phytase Market Share, Size, Trends, Industry Analysis Report. [Internet]. Available from: https://www.polarismarketresearch.com/industry-analysis/animal-feed-phytase-market

  • Xie Z, Fong WP, Tsang PWK. Engineering and optimization of phosphate-responsive phytase expression in Pichia pastoris yeast for phytate hydrolysis. Enzyme Microb Technol. 2020;137.

  • De Groot E, Bebelman JP, Mager WH, Planta RJ. Very low amounts of glucose cause repression of the stress-responsive gene HSP12 in Saccharomyces cerevisiae. Microbiol (Reading). 2000;146(Pt 2):367–75.

    Article 

    Google Scholar
     

  • Bernat-Camps N, Ebner K, Schusterbauer V, Fischer JE, Nieto-Taype MA, Valero F et al. Enabling growth-decoupled Komagataella Phaffii recombinant protein production based on the methanol-free PDH promoter. Front Bioeng Biotechnol. 2023;11.

  • Casado C, González A, Platara M, Ruiz A, Ariño J. The role of the protein kinase A pathway in the response to alkaline pH stress in yeast. Biochem J. 2011;438:523–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Serrano R, Martín H, Casamayor A, Ariño J, Martin H, Casamayor A, et al. Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway. J Biol Chem. 2006;281:39785–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Platara M, Ruiz A, Serrano R, Palomino A, Moreno F, Arino J. The Transcriptional response of the yeast Na+-ATPase ENA1 gene to alkaline stress involves three Main Signaling pathways. J Biol Chem. 2006;281:36632–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruiz A, Serrano R, Arino J. Direct regulation of genes involved in glucose utilization by the calcium/calcineurin pathway. JBiolChem. 2008;283:13923–33.

    CAS 

    Google Scholar
     

  • Casamayor A, Serrano R, Platara M, Casado C, Ruiz A, Ariño J. The role of the Snf1 kinase in the adaptive response of Saccharomyces cerevisiae to alkaline pH stress. Biochem J. 2012;444:39–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Meara TR, Norton D, Price MS, Hay C, Clements MF, Nichols CB, et al. Interaction of Cryptococcus neoformans Rim101 and protein kinase a regulates capsule. PLoSPathog. 2010;6:e1000776.


    Google Scholar
     

  • Hong SP, Carlson M. Regulation of snf1 protein kinase in response to environmental stress. JBiolChem. 2007;282:16838–45.

    CAS 

    Google Scholar
     

  • Lamb TM, Mitchell AP. The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol Cell Biol. 2003;23:677–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Liang Y, Zhang B, Zheng W, Xing L, Li M. Alkaline stress triggers an immediate calcium fluctuation in Candida albicans mediated by Rim101p and Crz1p transcription factors. FEMS Yeast Res. 2011;11:430–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Penalva MA, Tilburn J, Bignell E, Arst Jr. HN. Ambient pH gene regulation in fungi: making connections. Trends Microbiol. 2008;16:291–300.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Viladevall L, Serrano R, Ruiz A, Domenech G, Giraldo J, Barcelo A, et al. Characterization of the calcium-mediated response to alkaline stress in Saccharomyces cerevisiae. J Biol Chem. 2004;279:43614–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Serrano R, Ruiz A, Bernal D, Chambers JR, Arino J. The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling. Mol Microbiol. 2002;46:1319–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petrezsélyová S, López-Malo M, Canadell D, Roque A, Serra-Cardona A, Marqués M et al. R Sugiura editor 2016 Regulation of the Na+/K+-ATPase Ena1 expression by Calcineurin/Crz1 under high pH stress: a quantitative study. PLoS ONE 11 e0158424.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roque A, Petrezsélyová S, Serra-Cardona A, Ariño J. Genome-wide recruitment profiling of transcription factor Crz1 in response to high pH stress. BMC Genomics. 2016;17:662.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernández-Ortiz P, Espeso EA. Phospho-regulation and nucleocytoplasmic trafficking of CrzA in response to calcium and alkaline-pH stress in aspergillus nidulans. Mol Microbiol. 2013;89:532–51.

    Article 
    PubMed 

    Google Scholar
     

  • Serra-Cardona A, Petrezsélyová S, Canadell D, Ramos J, Ariño J. Coregulated expression of the Na+/phosphate Pho89 transporter and Ena1 Na+-ATPase allows their functional coupling under high-pH stress. Mol Cell Biol. 2014;34:4420–35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castoria R, Miccoli C, Barone G, Palmieri D, De Curtis F, Lima G, et al. Molecular tools for the yeast papiliotrema terrestris LS28 and identification of Yap1 as a transcription factor involved in Biocontrol Activity. Appl Environ Microbiol. 2021;87:1–16.

    Article 

    Google Scholar
     

  • Berthelet S, Usher J, Shulist K, Hamza A, Maltez N, Johnston A, et al. Functional genomics analysis of the Saccharomyces cerevisiae iron responsive transcription factor Aft1 reveals iron-independent functions. Genetics. 2010;185:1111–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serrano R, Bernal D, Simón E, Arino J. Copper and iron are the limiting factors for growth of the yeast Saccharomyces cerevisiae in an alkaline environment. J Biol Chem. 2004;279:19698–704.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bensen ES, Martin SJ, Li M, Berman J, Davis DA. Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol Microbiol. 2004;54:1335–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Picazo I, Etxebeste O, Requena E, Garzia A, Espeso EA. Defining the transcriptional responses of aspergillus nidulans to cation/alkaline pH stress and the role of the transcription factor SltA. Microb Genom. 2020;6:1–18.

    CAS 

    Google Scholar
     

  • Ilina Y, Sloma E, Maciaszczyk-Dziubinska E, Novotny M, Thorsen M, Wysocki R, et al. Characterization of the DNA-binding motif of the arsenic-responsive transcription factor Yap8p. Biochem J. 2008;415:467–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin-Cereghino GP, Godfrey L, de la Cruz BJ, Johnson S, Khuongsathiene S, Tolstorukov I, et al. Mxr1p, a key regulator of the methanol utilization pathway and peroxisomal genes in Pichia pastoris. Mol Cell Biol. 2006;26:883–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kranthi BV, Kumar R, Kumar NV, Rao DN, Rangarajan PN. Identification of key DNA elements involved in promoter recognition by Mxr1p, a master regulator of methanol utilization pathway in Pichia pastoris. Biochim Biophys Acta Gene Regul Mech. 2009;1789:460–8.

    Article 
    CAS 

    Google Scholar
     

  • Adamczyk J, Deregowska A, Skoneczny M, Skoneczna A, Kwiatkowska A, Potocki L, et al. Adaptive response to chronic mild ethanol stress involves ROS, sirtuins and changes in chromosome dosage in wine yeasts. Oncotarget. 2016;7:29958–76.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai Y, Kandula V, Kosuru R, Ye X, Irwin MG, Xia Z. Decoding telomere protein Rap1: its telomeric and nontelomeric functions and potential implications in diabetic cardiomyopathy. Cell Cycle. 2017;16:1765–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vogl T, Sturmberger L, Kickenweiz T, Wasmayer R, Schmid C, Hatzl AM, et al. A toolbox of Diverse promoters related to methanol utilization: functionally verified parts for Heterologous Pathway expression in Pichia pastoris. ACS Synth Biol. 2016;5:172–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruth C, Buchetics M, Vidimce V, Kotz D, Naschberger S, Mattanovich D et al. Pichia pastoris Aft1–a novel transcription factor, enhancing recombinant protein secretion. Microb Cell Fact. 2014;13.

  • Lage P, Sampaio-Marques B, Ludovico P, Mira NP, Mendes-Ferreira A. Transcriptomic and chemogenomic analyses unveil the essential role of Com2-regulon in response and tolerance of Saccharomyces cerevisiae to stress induced by sulfur dioxide. Microb Cell. 2019;6:509–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai C, Tesker M, Melamed-Kadosh D, Engelberg D, Admon A. Hog1-induced transcription of RTC3 and HSP12 is robust and occurs in cells lacking Msn2, Msn4, Hot1 and Sko1. PLoS ONE. 2020;15.

  • Ariño J, Ramos J, Sychrova H. Monovalent cation transporters at the plasma membrane in yeasts. Yeast. 2019;36:177–93.

    Article 
    PubMed 

    Google Scholar
     

  • Hu X, Chu J, Zhang S, Zhuang Y, Wu X, Chen H, et al. An alkaline pH control strategy for methionine adenosyltransferase production in Pichia pastoris fermentation. Biotechnol Bioprocess Eng. 2014;19:900–7.

    Article 
    CAS 

    Google Scholar
     

  • Jallouli R, Parsiegla G, Carrière F, Gargouri Y, Bezzine S. Efficient heterologous expression of Fusarium solani lipase, FSL2, in Pichia pastoris, functional characterization of the recombinant enzyme and molecular modeling. Int J Biol Macromol. 2017;94:61–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Description of Image

    Source link