Scientific Papers

GLUT4 localisation with the plasma membrane is unaffected by an increase in plasma free fatty acid availability | Lipids in Health and Disease

Description of Image

  • Capaldo B, Gastaldelli A, Antoniello S, Auletta M, Pardo F, Ciociaro D, Guida R, Ferrannini E, Sacca L. Splanchnic and leg substrate exchange after ingestion of a natural mixed meal in humans. Diabetes. 1999;48:958–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katz LD, Glickman MG, Rapoport S, Ferrannini E, DeFronzo RA. Splanchnic and peripheral disposal of oral glucose in man. Diabetes. 1983;32:675–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeFronzo RA, Gunnarsson R, Bjorkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985;76:149–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeFronzo RA, Binder C, Wahren J, Felig P, Ferrannini E, Faber OK. Sensitivity of insulin secretion to feedback inhibition by hyperinsulinaemia. Acta Endocrinol (Copenh). 1981;98:81–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Thiebaud D, Jacot E, DeFronzo RA, Maeder E, Jequier E, Felber JP. The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes. 1982;31:957–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uldry M, Thorens B. The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch. 2004;447:480–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watson RT, Pessin JE. Intracellular organization of insulin signaling and GLUT4 translocation. Recent Prog Horm Res. 2001;56:175–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guma A, Zierath JR, Wallberg-Henriksson H, Klip A. Insulin induces translocation of GLUT-4 glucose transporters in human skeletal muscle. Am J Physiol. 1995;268:E613-622.

    CAS 
    PubMed 

    Google Scholar
     

  • Ploug T, van Deurs B, Ai H, Cushman SW, Ralston E. Analysis of GLUT4 distribution in whole skeletal muscle fibers: identification of distinct storage compartments that are recruited by insulin and muscle contractions. J Cell Biol. 1998;142:1429–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodnick KJ, Slot JW, Studelska DR, Hanpeter DE, Robinson LJ, Geuze HJ, James DE. Immunocytochemical and biochemical studies of GLUT4 in rat skeletal muscle. J Biol Chem. 1992;267:6278–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lauritzen HP, Galbo H, Brandauer J, Goodyear LJ, Ploug T. Large GLUT4 vesicles are stationary while locally and reversibly depleted during transient insulin stimulation of skeletal muscle of living mice: imaging analysis of GLUT4-enhanced green fluorescent protein vesicle dynamics. Diabetes. 2008;57:315–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lizunov VA, Stenkula KG, Lisinski I, Gavrilova O, Yver DR, Chadt A, Al-Hasani H, Zimmerberg J, Cushman SW. Insulin stimulates fusion, but not tethering, of GLUT4 vesicles in skeletal muscle of HA-GLUT4-GFP transgenic mice. Am J Physiol Endocrinol Metab. 2012;302:E950-960.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fazakerley DJ, Lawrence SP, Lizunov VA, Cushman SW, Holman GD. A common trafficking route for GLUT4 in cardiomyocytes in response to insulin, contraction and energy-status signalling. J Cell Sci. 2009;122:727–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schertzer JD, Antonescu CN, Bilan PJ, Jain S, Huang X, Liu Z, Bonen A, Klip A. A transgenic mouse model to study glucose transporter 4myc regulation in skeletal muscle. Endocrinology. 2009;150:1935–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bradley H, Shaw CS, Bendtsen C, Worthington PL, Wilson OJ, Strauss JA, Wallis GA, Turner AM, Wagenmakers AJ. Visualization and quantitation of GLUT4 translocation in human skeletal muscle following glucose ingestion and exercise. Physiol Rep. 2015;3:e12375.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barrett JS, Whytock KL, Strauss JA, Wagenmakers AJM, Shepherd SO. High intramuscular triglyceride turnover rates and the link to insulin sensitivity: influence of obesity, type 2 diabetes and physical activity. Appl Physiol Nutr Metab. 2022;47:343–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goodpaster BH, Thaete FL, Simoneau JA, Kelley DE. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes. 1997;46:1579–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forouhi NG, Jenkinson G, Thomas EL, Mullick S, Mierisova S, Bhonsle U, McKeigue PM, Bell JD. Relation of triglyceride stores in skeletal muscle cells to central obesity and insulin sensitivity in European and South Asian men. Diabetologia. 1999;42:932–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boden G, Chen X, Ruiz J, White JV, Rossetti L. Mechanisms of fatty acid-induced inhibition of glucose uptake. J Clin Invest. 1994;93:2438–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah P, Vella A, Basu A, Basu R, Adkins A, Schwenk WF, Johnson CM, Nair KS, Jensen MD, Rizza RA. Effects of free fatty acids and glycerol on splanchnic glucose metabolism and insulin extraction in nondiabetic humans. Diabetes. 2002;51:301–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chow LS, Seaquist ER, Eberly LE, Mashek MT, Schimke JM, Nair KS, Mashek DG. Acute free fatty acid elevation eliminates endurance training effect on insulin sensitivity. J Clin Endocrinol Metab. 2012;97:2890–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chow LS, Mashek DG, Austin E, Eberly LE, Persson XM, Mashek MT, Seaquist ER, Jensen MD. Training status diverges muscle diacylglycerol accumulation during free fatty acid elevation. Am J Physiol Endocrinol Metab. 2014;307:E124-131.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eldor R, Norton L, Fourcaudot M, Galindo C, DeFronzo RA, Abdul-Ghani M. Increased lipid availability for three days reduces whole body glucose uptake, impairs muscle mitochondrial function and initiates opposing effects on PGC-1alpha promoter methylation in healthy subjects. PLoS One. 2017;12:e0188208.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35:1381–95.

    Article 
    PubMed 

    Google Scholar
     

  • Bradley H, Shaw CS, Worthington PL, Shepherd SO, Cocks M, Wagenmakers AJ. Quantitative immunofluorescence microscopy of subcellular GLUT4 distribution in human skeletal muscle: effects of endurance and sprint interval training. Physiol Rep. 2014;2:e12085.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kass M, Witkin A, Terzopoulos D. Snakes – active contour models. Int J Comput Vision. 1987;1:321–31.

    Article 

    Google Scholar
     

  • Houmard JA, Egan PC, Neufer PD, Friedman JE, Wheeler WS, Israel RG, Dohm GL. Elevated skeletal muscle glucose transporter levels in exercise-trained middle-aged men. Am J Physiol. 1991;261:E437-443.

    CAS 
    PubMed 

    Google Scholar
     

  • Hughes VA, Fiatarone MA, Fielding RA, Kahn BB, Ferrara CM, Shepherd P, Fisher EC, Wolfe RR, Elahi D, Evans WJ. Exercise increases muscle GLUT-4 levels and insulin action in subjects with impaired glucose tolerance. Am J Physiol. 1993;264:E855-862.

    CAS 
    PubMed 

    Google Scholar
     

  • Dela F, Mikines KJ, Larsen JJ, Galbo H. Training-induced enhancement of insulin action in human skeletal muscle: the influence of aging. J Gerontol A Biol Sci Med Sci. 1996;51:B247-252.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phillips SM, Green HJ, Tarnopolsky MA, Heigenhauser GF, Hill RE, Grant SM. Effects of training duration on substrate turnover and oxidation during exercise. J Appl Physiol. 1985;1996(81):2182–91.


    Google Scholar
     

  • Cox JH, Cortright RN, Dohm GL, Houmard JA. Effect of aging on response to exercise training in humans: skeletal muscle GLUT-4 and insulin sensitivity. J Appl Physiol. 1985;1999(86):2019–25.


    Google Scholar
     

  • Daugaard JR, Nielsen JN, Kristiansen S, Andersen JL, Hargreaves M, Richter EA. Fiber type-specific expression of GLUT4 in human skeletal muscle: influence of exercise training. Diabetes. 2000;49:1092–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kristiansen S, Gade J, Wojtaszewski JF, Kiens B, Richter EA. Glucose uptake is increased in trained vs. untrained muscle during heavy exercise. J Appl Physiol (1985). 2000;89:1151–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burgomaster KA, Cermak NM, Phillips SM, Benton CR, Bonen A, Gibala MJ. Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining. Am J Physiol Regul Integr Comp Physiol. 2007;292:R1970-1976.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Babraj JA, Vollaard NB, Keast C, Guppy FM, Cottrell G, Timmons JA. Extremely short duration high intensity interval training substantially improves insulin action in young healthy males. BMC Endocr Disord. 2009;9:3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol. 2010;588:1011–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hood MS, Little JP, Tarnopolsky MA, Myslik F, Gibala MJ. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Med Sci Sports Exerc. 2011;43:1849–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes. 2002;51:2005–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vistisen B, Hellgren LI, Vadset T, Scheede-Bergdahl C, Helge JW, Dela F, Stallknecht B. Effect of gender on lipid-induced insulin resistance in obese subjects. Eur J Endocrinol. 2008;158:61–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boden G, Lebed B, Schatz M, Homko C, Lemieux S. Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes. 2001;50:1612–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G, Prelovsek O, Hohnen-Behrens C, Watt MJ, James DE, et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes. 2006;55:2688–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krogh-Madsen R, Plomgaard P, Keller P, Keller C, Pedersen BK. Insulin stimulates interleukin-6 and tumor necrosis factor-alpha gene expression in human subcutaneous adipose tissue. Am J Physiol Endocrinol Metab. 2004;286:E234-238.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andersen PH, Lund S, Schmitz O, Junker S, Kahn BB, Pedersen O. Increased insulin-stimulated glucose uptake in athletes: the importance of GLUT4 mRNA, GLUT4 protein and fibre type composition of skeletal muscle. Acta Physiol Scand. 1993;149:393–404.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koh HE, van Vliet S, Meyer GA, Laforest R, Gropler RJ, Klein S, Mittendorfer B. Heterogeneity in insulin-stimulated glucose uptake among different muscle groups in healthy lean people and people with obesity. Diabetologia. 2021;64:1158–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larsen MR, Steenberg DE, Birk JB, Sjoberg KA, Kiens B, Richter EA, Wojtaszewski JFP. The insulin-sensitizing effect of a single exercise bout is similar in type I and type II human muscle fibres. J Physiol. 2020;598:5687–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stenkula KG, Lizunov VA, Cushman SW, Zimmerberg J. Insulin controls the spatial distribution of GLUT4 on the cell surface through regulation of its postfusion dispersal. Cell Metab. 2010;12:250–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thompson AL, Cooney GJ. Acyl-CoA inhibition of hexokinase in rat and human skeletal muscle is a potential mechanism of lipid-induced insulin resistance. Diabetes. 2000;49:1761–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1:785–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoeg LD, Sjoberg KA, Jeppesen J, Jensen TE, Frosig C, Birk JB, Bisiani B, Hiscock N, Pilegaard H, Wojtaszewski JF, et al. Lipid-induced insulin resistance affects women less than men and is not accompanied by inflammation or impaired proximal insulin signaling. Diabetes. 2011;60:64–73.

    Article 
    PubMed 

    Google Scholar
     

  • Knudsen JR, Steenberg DE, Hingst JR, Hodgson LR, Henriquez-Olguin C, Li Z, Kiens B, Richter EA, Wojtaszewski JFP, Verkade P, Jensen TE. Prior exercise in humans redistributes intramuscular GLUT4 and enhances insulin-stimulated sarcolemmal and endosomal GLUT4 translocation. Mol Metab. 2020;39:100998.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Description of Image

    Source link