Scientific Papers

Fungal and bacterial communities and their associations in snow-free and snow covered (sub-)alpine Pinus cembra forest soils | Environmental Microbiome

Description of Image

  • Casalegno S, Amatulli G, Camia A, Nelson A, Pekkarinen A. Vulnerability of Pinus cembra L. in the Alps and the Carpathian mountains under present and future climates. Forest Ecol Management. 2010;259(4):750–61. https://doi.org/10.1016/j.foreco.2009.10.001.

    Article 

    Google Scholar
     

  • Donhauser J, Frey B. Alpine soil microbial ecology in a changing world. Fems Microbiol Ecol. 2018. https://doi.org/10.1093/femsec/fiy099.

    Article 
    PubMed 

    Google Scholar
     

  • Vavrus S. The role of terrestrial snow cover in the climate system. Clim Dynam. 2007;29(1):73–88. https://doi.org/10.1007/s00382-007-0226-0.

    Article 

    Google Scholar
     

  • Blankinship JC, Hart SC. Consequences of manipulated snow cover on soil gaseous emission and N retention in the growing season: a meta-analysis. Ecosphere. 2012. https://doi.org/10.1890/Es11-00225.1.

    Article 

    Google Scholar
     

  • Zhao ZM, De Frenne P, Peñuelas J, Van Meerbeek K, Fornara DA, Peng Y, et al. Effects of snow cover-induced microclimate warming on soil physicochemical and biotic properties. Geoderma. 2022. https://doi.org/10.1016/j.geoderma.2022.115983.

    Article 

    Google Scholar
     

  • Sutinen R, Hänninen P, Venäläinen A. Effect of mild winter events on soil water content beneath snowpack. Cold Reg Sci Technol. 2008;51(1):56–67. https://doi.org/10.1016/j.coldregions.2007.05.014.

    Article 

    Google Scholar
     

  • Slatyer RA, Umbers KDL, Arnold PA. Ecological responses to variation in seasonal snow cover. Conserv Biol. 2022. https://doi.org/10.1111/cobi.13727.

    Article 
    PubMed 

    Google Scholar
     

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. The importance of the microbiome of the plant holobiont. New Phytol. 2015;206(4):1196–206. https://doi.org/10.1111/nph.13312.

    Article 
    PubMed 

    Google Scholar
     

  • Bruns TD, Bidartondo MI, Taylor DL. Host specificity in ectomycorrhizal communities: what do the exceptions tell us? Integrative Comparative Biol. 2002;42(2):352–9. https://doi.org/10.1093/icb/42.2.352.

    Article 

    Google Scholar
     

  • Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP. Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev. 2012;26(1):39–60. https://doi.org/10.1016/j.fbr.2012.01.001.

    Article 

    Google Scholar
     

  • Mandolini E, Bacher M, Peintner U. Ectomycorrhizal fungal communities of Swiss stone pine (Pinus cembra) depend on climate and tree age in natural forests of the Alps. Plant Soil. 2022. https://doi.org/10.1007/s11104-022-05497-z.

    Article 

    Google Scholar
     

  • Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, et al. Bacterial-fungal interactions: ecology, mechanisms and challenges. Fems Microbiol Rev. 2018;42(3):335–52. https://doi.org/10.1093/femsre/fuy008.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poppeliers SWM, Hefting M, Dorrepaal E, Weedon JT. Functional microbial ecology in arctic soils: the need for a year-round perspective. Fems Microbiol Ecol. 2022. https://doi.org/10.1093/femsec/fiac134.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaiser C, Koranda M, Kitzler B, Fuchslueger L, Schnecker J, Schweiger P, et al. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol. 2010;187(3):843–58. https://doi.org/10.1111/j.1469-8137.2010.03321.x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vorísková J, Brabcová V, Cajthaml T, Baldrian P. Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytol. 2014;201(1):269–78. https://doi.org/10.1111/nph.12481.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • López-Mondéjar R, Vorísková J, Vetrovsky T, Baldrian P. The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics. Soil Biol Biochem. 2015;87:43–50. https://doi.org/10.1016/j.soilbio.2015.04.008.

    Article 
    CAS 

    Google Scholar
     

  • Santalahti M, Sun H, Jumpponen A, Pennanen T, Heinonsalo J. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil. Fems Microbiol Ecol. 2016. https://doi.org/10.1093/femsec/fiw170.

    Article 
    PubMed 

    Google Scholar
     

  • Žifčáková L, Větrovský T, Howe A, Baldrian P. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ Microbiol. 2016;18(1):288–301. https://doi.org/10.1111/1462-2920.13026.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mannisto M, Vuosku J, Stark S, Saravesi K, Suokas M, Markkola A, et al. Bacterial and fungal communities in boreal forest soil are insensitive to changes in snow cover conditions. Fems Microbiol Ecol. 2018. https://doi.org/10.1093/femsec/fiy123.

    Article 
    PubMed 

    Google Scholar
     

  • Uroz S, Buée M, Deveau A, Mieszkin S, Martin F. Ecology of the forest microbiome: highlights of temperate and boreal ecosystems. Soil Biol Biochem. 2016;103:471–88. https://doi.org/10.1016/j.soilbio.2016.09.006.

    Article 
    CAS 

    Google Scholar
     

  • Mandolini E, Probst M, Peintner U. Methods for studying bacterial-fungal interactions in the microenvironments of soil. Appl Sci-Basel. 2021. https://doi.org/10.3390/app11199182.

    Article 

    Google Scholar
     

  • Rottjers L, Faust K. From hairballs to hypotheses-biological insights from microbial networks. Fems Microbiol Rev. 2018;42(6):761–80. https://doi.org/10.1093/femsre/fuy030.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guseva K, Darcy S, Simon E, Alteio LV, Montesinos-Navarro A, Kaiser C. From diversity to complexity: microbial networks in soils. Soil Biol Biochem. 2022. https://doi.org/10.1016/j.soilbio.2022.108604.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014. https://doi.org/10.3389/fmicb.2014.00219.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 2016;10(7):1669–81. https://doi.org/10.1038/ismej.2015.235.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuhnert R, Oberkofler I, Peintner U. Fungal growth and biomass development is boosted by plants in snow-covered soil. Microb Ecol. 2012;64(1):79–90. https://doi.org/10.1007/s00248-011-0001-y.

    Article 
    PubMed 

    Google Scholar
     

  • Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, et al. New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. Fems Microbiol Ecol. 2012;82(3):666–77. https://doi.org/10.1111/j.1574-6941.2012.01437.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • White TJ. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand DH, editors. PCR Protocols. Academic Press; 1990. p. 315–22.


    Google Scholar
     

  • Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18(5):1403–14. https://doi.org/10.1111/1462-2920.13023.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Apprill A, McNally SP, Parsons RJ, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquatic Microbial Ecol. 2015;75:129–37.

    Article 

    Google Scholar
     

  • Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10–2. https://doi.org/10.14806/ej.17.1.200.

    Article 

    Google Scholar
     

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581. https://doi.org/10.1038/Nmeth.3869.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abarenkov K, Nilsson RH, Larsson KH, Taylor AFS, May TW, Froslev TG, et al. The UNITE database for molecular identification and taxonomic communication of fungi and other eukaryotes: sequences, taxa and classifications reconsidered. Nucleic Acids Res. 2024;52(D1):D791–7. https://doi.org/10.1093/nar/gkad1039.

    Article 
    PubMed 

    Google Scholar
     

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(D1):D590–6. https://doi.org/10.1093/nar/gks1219.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Team RC: R: A language and environment for statistical computing. In.: R Foundation for Statistical Computing, Vienna, Austria; 2022

  • Anderson MJ. Permutational Multivariate Analysis of Variance (PERMANOVA). In: Wiley StatsRef: Statistics Reference Online. p 1–15

  • Oksanen J SG, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Solymos P, Stevens MHH, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho D, Chirico M, De Caceres M, Durand S, Evangelista MBA, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill MO, Lahti L, McGlinn D, Ouellette MH, Cunha ER, Smith T, Stier A, Ter Braak CJF, Weedon J: Vegan: Community ecology package. In., vol. R package version 2.6–4; 2022

  • Warnes GR BB, Bonebakker L, Gentleman R, Huber W, Liaw A, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B: gplots: Various R programming tools for plotting data. In., vol. R package version 3.1.1.; 2020

  • Kurtz Z, Mueller C, Miraldi E, R B: SpiecEasi: Sparse inverse covariance for ecological statistical inference. In., R package version 1.1.1 edn; 2021

  • Csardi GN, Tamas. The igraph software package for complex network research. Inter J Complex Systems. 2006;1965(5):1–9.


    Google Scholar
     

  • Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016.

    Book 

    Google Scholar
     

  • Nguyen HDT, Nickerson NL, Seifert KA. Basidioascus and Geminibasidium: a new lineage of heat-resistant and xerotolerant basidiomycetes. Mycologia. 2013;105(5):1231–50. https://doi.org/10.3852/12-351.

    Article 
    PubMed 

    Google Scholar
     

  • Rainer G, Kuhnert R, Unterholzer M, Dresch P, Gruber A, Peintner U. Host-specialist dominated ectomycorrhizal communities of are not affected by temperature manipulation. J Fungi. 2015;1(1):55–75. https://doi.org/10.3390/jof1010055.

    Article 

    Google Scholar
     

  • Dedysh SN. Bryobacteraceae. In: Whitman WB, editor. Bergey’s Manual of Systematics of Archaea and Bacteria. Wiley; 2019. p. 1–4.


    Google Scholar
     

  • Bordel S, Crombie AT, Muñoz R, Murrell JC. Genome Scale Metabolic Model of the versatile methanotroph Methylocella silvestris. Microb Cell Fact. 2020. https://doi.org/10.1186/s12934-020-01395-0.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brooks RS, Blanchard MT, Clothier KA, Fish S, Anderson ML, Stott JL. Characterization of Pajaroellobacter abortibovis, the etiologic agent of epizootic bovine abortion. Veterinary Microbiol. 2016;192:73–80.

    Article 
    CAS 

    Google Scholar
     

  • Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS, Wijesundera R, et al. Global diversity and geography of soil fungi. Science. 2014;346(6213):1078. https://doi.org/10.1126/science.1256688.

    Article 
    CAS 

    Google Scholar
     

  • Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359(6373):320. https://doi.org/10.1126/science.aap9516.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caporaso J, Paszkiewicz K, Field D, Knight R, Gilbert JA. The Western English Channel contains a persistent microbial seed bank. Isme J. 2012;6(6):1089–93. https://doi.org/10.1038/ismej.2011.162.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baldrian P, López-Mondéjar R, Kohout P. Forest microbiome and global change. Nature Rev Microbiol. 2023;21(8):487–501. https://doi.org/10.1038/s41579-023-00876-4.

    Article 
    CAS 

    Google Scholar
     

  • Rime T, Hartmann M, Frey B. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier. Isme J. 2016;10(7):1625–41. https://doi.org/10.1038/ismej.2015.238.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isobe K, Oka H, Watanabe T, Tateno R, Urakawa R, Liang C, et al. High soil microbial activity in the winter season enhances nitrogen cycling in a cool-temperate deciduous forest. Soil Biol Biochem. 2018;124:90–100. https://doi.org/10.1016/j.soilbio.2018.05.028.

    Article 
    CAS 

    Google Scholar
     

  • Kuffner M, Hai B, Rattei T, Melodelima C, Schloter M, Zechmeister-Boltenstern S, et al. Effects of season and experimental warming on the bacterial community in a temperate mountain forest soil assessed by 16S rRNA gene pyrosequencing. Fems Microbiol Ecol. 2012;82(3):551–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Žifčáková L, Větrovský T, Lombard V, Henrissat B, Howe A, Baldrian P. Feed in summer, rest in winter: microbial carbon utilization in forest topsoil. Microbiome. 2017;5(1):122. https://doi.org/10.1186/s40168-017-0340-0.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agnelli A, Ascher J, Corti G, Ceccherini MT, Pietramellara G, Nannipieri P. Purification and isotopic signatures (δ13C, δ15N, Δ14C) of soil extracellular DNA. Biol Fertility Soils. 2007;44(2):353–61. https://doi.org/10.1007/s00374-007-0213-y.

    Article 
    CAS 

    Google Scholar
     

  • Nagler M, Podmirseg SM, Mayr M, Ascher-Jenull J, Insam H. The masking effect of extracellular DNA and robustness of intracellular DNA in anaerobic digester NGS studies: a discriminatory study of the total DNA pool. Mol Ecol. 2021;30(2):438–50. https://doi.org/10.1111/mec.15740.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khanna MGS. Transformation of Bacillus subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA. Appl Environ Microb. 1992;58(6):1930. https://doi.org/10.1128/aem.58.6.1930-1939.1992.

    Article 
    CAS 

    Google Scholar
     

  • Pietramellara G, Ascher J, Borgogni F, Ceccherini MT, Guerri G, Nannipieri P. Extracellular DNA in soil and sediment: fate and ecological relevance. Biol Fertility Soils. 2009;45(3):219–35. https://doi.org/10.1007/s00374-008-0345-8.

    Article 
    CAS 

    Google Scholar
     

  • Koechli C, Campbell AN, Pepe-Ranney C, Buckley DH. Assessing fungal contributions to cellulose degradation in soil by using high-throughput stable isotope probing. Soil Biol Biochem. 2019;130:150–8. https://doi.org/10.1016/j.soilbio.2018.12.013.

    Article 
    CAS 

    Google Scholar
     

  • Lundell TK, Mäkelä MR, de Vries RP, Hildén KS. Genomics, lifestyles and future prospects of wood-decay and litter-decomposing basidiomycota. Adv Bot Res. 2014;70:329–70. https://doi.org/10.1016/B978-0-12-397940-7.00011-2.

    Article 

    Google Scholar
     

  • Miyamoto T, Koda K, Kawaguchi A, Uraki Y. Ligninolytic activity at 0 °C of fungi on oak leaves under snow cover in a mixed forest in Japan. Microb Ecol. 2017;74(2):322–31. https://doi.org/10.1007/s00248-017-0952-8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ho A, Di Lonardo DP, Bodelier PLE. Revisiting life strategy concepts in environmental microbial ecology. Fems Microbiol Ecol. 2017. https://doi.org/10.1093/femsec/fix006.

    Article 
    PubMed 

    Google Scholar
     

  • Keller G. Utilization of inorganic and organic nitrogen sources by high-subalpine ectomycorrhizal fungi of Pinus cembra in pure culture. Mycol Res. 1996;100:989–98. https://doi.org/10.1016/S0953-7562(96)80053-0.

    Article 
    CAS 

    Google Scholar
     

  • Kennedy PG, Hortal S, Bergemann SE, Bruns TD. Competitive interactions among three ectomycorrhizal fungi and their relation to host plant performance. J Ecol. 2007;95(6):1338–45. https://doi.org/10.1111/j.1365-2745.2007.01306.x.

    Article 
    CAS 

    Google Scholar
     

  • Beiler KJ, Durall DM, Simard SW, Maxwell SA, Kretzer AM. Architecture of the wood‐wide web: Rhizopogon spp. genets link multiple Douglas‐fir cohorts. New Phytol. 2010;185(2):543–53. https://doi.org/10.1111/j.1469-8137.2009.03069.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hibbett DS, Bauer R, Binder M, Giachini AJ, Hosaka K, Justo A, et al. Agaricomycetes. In: McLaughlin DJ, Spatafora JW, editors., et al., Systematics and Evolution: Part A. Berlin, Heidelberg: Springer; 2014. p. 373–429.

    Chapter 

    Google Scholar
     

  • Bandoni RJ. Terrestrial occurrence of some aquatic Hyphomycetes. Can J Botany. 1972;50(11):2283. https://doi.org/10.1139/b72-297.

    Article 

    Google Scholar
     

  • Bärlocher F, Oertli JJ. Inhibitors of aquatic hyphomycetes in dead conifer needles. Mycologia. 1978;70(5):964–74. https://doi.org/10.2307/3759131.

    Article 

    Google Scholar
     

  • Vanegas-León ML, Sulzbacher MA, Rinaldi AC, Roy M, Selosse MA, Neves MA. Are Trechisporales ectomycorrhizal or non-mycorrhizal root endophytes? Mycol Prog. 2019;18(9):1231–40. https://doi.org/10.1007/s11557-019-01519-w.

    Article 

    Google Scholar
     

  • Lazar A, Mushinski RM, Bending GD. Landscape scale ecology of Tetracladium spp. fungal root endophytes. Environ Microbiome. 2022. https://doi.org/10.1186/s40793-022-00431-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perini L, Gostincar C, Gunde-Cimerman N. Fungal and bacterial diversity of Svalbard subglacial ice. Sci Rep-Uk. 2019. https://doi.org/10.1038/s41598-019-56290-5.

    Article 

    Google Scholar
     

  • Uetake J, Yoshimura Y, Nagatsuka N, Kanda H. Isolation of oligotrophic yeasts from supraglacial environments of different altitude on the Gulkana Glacier (Alaska). Fems Microbiol Ecol. 2012;82(2):279–86. https://doi.org/10.1111/j.1574-6941.2012.01323.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Margesin R, Fonteyne PA, Schinner F, Sampaio JP. Rhodotorula psychrophila sp. nov., Rhodotorula psychrophenolica sp. nov. and Rhodotorula glacialis sp. nov., novel psychrophilic basidiomycetous yeast species isolated from alpine environments. Int J Syst Evol Micr. 2007;57:2179–84. https://doi.org/10.1099/ijs.0.65111-0.

    Article 
    CAS 

    Google Scholar
     

  • Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15(10):579–90. https://doi.org/10.1038/nrmicro.2017.87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ibanez S, Brun C, Millery A, Piton G, Bernard L, Avrillier JN, et al. Litter and soil characteristics mediate the buffering effect of snow cover on litter decomposition. Plant Soil. 2021;460(1–2):511–25. https://doi.org/10.1007/s11104-020-04803-x.

    Article 
    CAS 

    Google Scholar
     

  • Lipson DA, Monson RK, Schmidt SK, Weintraub MN. The trade-off between growth rate and yield in microbial communities and the consequences for under-snow soil respiration in a high elevation coniferous forest. Biogeochemistry. 2009;95(1):23–35. https://doi.org/10.1007/s10533-008-9252-1.

    Article 

    Google Scholar
     

  • Boer W, Folman LB, Summerbell RC, Boddy L. Living in a fungal world: impact of fungi on soil bacterial niche development. Fems Microbiol Rev. 2005;29(4):795–811. https://doi.org/10.1016/j.femsre.2004.11.005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Egidi E, Delgado-Baquerizo M, Plett JM, Wang JT, Eldridge DJ, Bardgett RD, et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat Comm. 2019. https://doi.org/10.1038/s41467-019-10373-z.

    Article 

    Google Scholar
     

  • Telagathoti A, Probst M, Mandolini E, Peintner U. Mortierellaceae from subalpine and alpine habitats: new species of Entomortierella, Linnemannia, Mortierella, Podila and Tyroliella gen. nov. Stud Mycol. 2022;103:25–58. https://doi.org/10.3114/sim.2022.103.02.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Telagathoti A, Probst M, Peintner U. Habitat, snow-cover and soil pH, affect the distribution and diversity of mortierellaceae species and their associations to bacteria. Front Microbiol. 2021. https://doi.org/10.3389/fmicb.2021.669784.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badali H, Gueidan C, Najafzadeh MJ, Bonifaz A, Van den Ende AHGG, de Hoog GS. Biodiversity of the genus Cladophialophora. Stud Mycol. 2008;61:175–91. https://doi.org/10.3114/sim.2008.61.18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berry AM, Barabote RD, Normand P. The Family Acidothermaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes: Actinobacteria. Berlin, Heidelberg: Springer; 2014. p. 13–9.


    Google Scholar
     

  • Li CW, Chen GZ, Zhang JL, Zhu P, Bai XF, Hou YP, et al. The comprehensive changes in soil properties are continuous cropping obstacles associated with American ginseng (Panax quinquefolius) cultivation. Sci Rep-Uk. 2021. https://doi.org/10.1038/s41598-021-84436-x.

    Article 

    Google Scholar
     

  • Ezeokoli OT, Bezuidenhout CC, Maboeta MS, Khasa DP, Adeleke RA. Structural and functional differentiation of bacterial communities in post-coal mining reclamation soils of South Africa: bioindicators of soil ecosystem restoration. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-58576-5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar G, Lhingjakim KL, Uppada J, Ahamad S, Kumar D, Kashif GM, et al. Aquisphaera insulae sp. Nov., a new member in the family Isosphaeraceae, isolated from the floating island of Loktak lake and emended description of the genus Aquisphaera. Anton Leeuw Int J G. 2021;114(9):1465–77. https://doi.org/10.1007/s10482-021-01615-6.

    Article 
    CAS 

    Google Scholar
     

  • Looney BP, Meidl P, Piatek MJ, Miettinen O, Martin FM, Matheny PB, et al. Russulaceae: a new genomic dataset to study ecosystem function and evolutionary diversification of ectomycorrhizal fungi with their tree associates. New Phytol. 2018;218(1):54–65. https://doi.org/10.1111/nph.15001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seki T, Matsumoto A, Shimada R, Inahashi Y, Omura S, Takahashi Y. Conexibacter arvalis sp. nov., isolated from a cultivated field soil sample. Int J Syst Evol Micr. 2012;62:2400–4. https://doi.org/10.1099/ijs.0.036095-0.

    Article 
    CAS 

    Google Scholar
     

  • Monciardini P, Cavaletti L, Schumann P, Rohde M, Donadio S. Conexibacter woesei gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria. Int J Syst Evol Micr. 2003;53:569–76. https://doi.org/10.1099/ijs.0.02400-0.

    Article 
    CAS 

    Google Scholar
     

  • Rahman MT, Crombie A, Chen Y, Stralis-Pavese N, Bodrossy L, Meir P, et al. Environmental distribution and abundance of the facultative methanotroph. ISME J. 2011;5(6):1061–6. https://doi.org/10.1038/ismej.2010.190.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kulichevskaya IS, Suzina NE, Liesack W, Dedysh SN. Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemo-organotroph from subdivision 3 of the acidobacteria. Int J Syst Evol Micr. 2010;60:301–6. https://doi.org/10.1099/ijs.0.013250-0.

    Article 

    Google Scholar
     

  • Wang RQ, Zhang ZH, Lv FJ, Lin HX, Wei LE, Xiao YP. Optimizing the bacterial community structure and function in rhizosphere soil of sesame continuous cropping by the appropriate nitrate ammonium ratio. Rhizosphere-Neth. 2022. https://doi.org/10.1016/j.rhisph.2022.100550.

    Article 

    Google Scholar
     

  • Pankratov TA, Dedysh SN. Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs. Int J Syst Evol Micr. 2010;60:2951–9. https://doi.org/10.1099/ijs.0.021824-0.

    Article 
    CAS 

    Google Scholar
     

  • Han SI, Lee HJ, Lee HR, Kim KK, Whang KS. Mucilaginibacter polysacchareus sp. nov., an exopolysaccharide-producing bacterial species isolated from the rhizoplane of the herb Angelica sinensis. Int J Syst Evol Micr. 2012;62:632–7. https://doi.org/10.1099/ijs.0.029793-0.

    Article 
    CAS 

    Google Scholar
     

  • Fan D, Smith DL. Mucilaginibacter sp. K improves growth and induces salt tolerance in nonhost plants via multilevel mechanisms. Front Plant Sci. 2022. https://doi.org/10.3389/fpls.2022.938697.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walsh CM, Gebert MJ, Delgado-Baquerizo M, Maestre FT, Fierer N. A global survey of mycobacterial diversity in soil. Appl Environ Microb. 2019. https://doi.org/10.1128/AEM.01180-19.

    Article 

    Google Scholar
     

  • Desirò A, Hao Z, Liber JA, Benucci GMN, Lowry D, Roberson R, et al. Mycoplasma-related endobacteria within Mortierellomycotina fungi: diversity, distribution and functional insights into their lifestyle. Isme J. 2018;12(7):1743–57. https://doi.org/10.1038/s41396-018-0053-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li F, Chen L, Redmile-Gordon M, Zhang J, Zhang C, Ning Q, et al. Mortierella elongata’s roles in organic agriculture and crop growth promotion in a mineral soil. Land Degrad Dev. 2018;29(6):1642–51. https://doi.org/10.1002/ldr.2965.

    Article 

    Google Scholar
     

  • Kulichevskaya IS, Kostina LA, Valásková V, Rijpstra WIC, Damsté JSS, de Boer W, et al. Acidicapsa borealis gen. nov., sp. nov. and Acidicapsa ligni sp. nov., subdivision 1 Acidobacteria from Sphagnum peat and decaying wood. Int J Syst Evol Micr. 2012;62:1512–20. https://doi.org/10.1099/ijs.0.034819-0.

    Article 
    CAS 

    Google Scholar
     

  • Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10(8):538–50. https://doi.org/10.1038/nrmicro2832.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blanchet FG, Cazelles K, Gravel D. Co-occurrence is not evidence of ecological interactions. Ecol Letters. 2020;23(7):1050–63. https://doi.org/10.1111/ele.13525.

    Article 

    Google Scholar
     

  • Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. Plos Comput Biol. 2015. https://doi.org/10.1371/journal.pcbi.1004226.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Popovic GC, Warton DI, Thomson FJ, Hui FKC, Moles AT. Untangling direct species associations from indirect mediator species effects with graphical models. Methods Ecol Evol. 2019;10(9):1571–83. https://doi.org/10.1111/2041-210x.13247.

    Article 

    Google Scholar
     

  • Poisot T, Stouffer DB, Gravel D. Beyond species: why ecological interaction networks vary through space and time. Oikos. 2015;124(3):243–51. https://doi.org/10.1111/oik.01719.

    Article 

    Google Scholar
     

  • Kauserud H. ITS alchemy: on the use of ITS as a DNA marker in fungal ecology. Fungal Ecol. 2023;65: 101274. https://doi.org/10.1016/j.funeco.2023.101274.

    Article 

    Google Scholar
     

  • Description of Image

    Source link