Scientific Papers

Exploration of vitamin D metabolic activity-related biological effects and corresponding therapeutic targets in prostate cancer | Nutrition & Metabolism

Description of Image

  • Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

    Article 
    PubMed 

    Google Scholar
     

  • Teo MY, Rathkopf DE, Kantoff P. Treatment of advanced prostate cancer. Annu Rev Med. 2019;70:479–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mansinho A, Macedo D, Fernandes I, Costa L. Castration-resistant prostate cancer: mechanisms, targets and treatment. Adv Exp Med Biol. 2018;1096:117–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siegel DA, O’Neil ME, Richards TB, Dowling NF, Weir HK. Prostate cancer incidence and survival, by stage and race/ethnicity – United States, 2001–2017. MMWR Morb Mortal Wkly Rep. 2020;69:1473–80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van den Broeck T, van den Bergh RCN, Briers E, Cornford P, Cumberbatch M, Tilki D, De Santis M, Fanti S, Fossati N, Gillessen S, Grummet JP, Henry AM, Lardas M, Liew M, Mason M, Moris L, Schoots IG, van der Kwast T, van der Poel H, Wiegel T, Willemse PM, Rouviere O, Lam TB, Mottet N. Biochemical recurrence in prostate cancer: the European Association of Urology Prostate Cancer Guidelines Panel recommendations. Eur Urol Focus. 2020;6:231–4.

    Article 
    PubMed 

    Google Scholar
     

  • Trump DL, Aragon-Ching JB. Vitamin D in prostate cancer. Asian J Androl. 2018;20:244–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang ZH, Liu MD, Yao K, Xu S, Yu DX, Xie DD, Xu DX. Vitamin D deficiency aggravates growth and metastasis of prostate cancer through promoting EMT in two beta-catenin-related mechanisms. J Nutr Biochem. 2022;111:109177.

    Article 
    PubMed 

    Google Scholar
     

  • McCray T, Pacheco J.V., Loitz C.C., Garcia J., Baumann B., Schlicht M.J., Valyi-Nagy K., Abern M.R., Nonn L. Vitamin D sufficiency enhances differentiation of patient-derived prostate epithelial organoids. iScience. 2021;24:101974.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karlsson S, Diaz Cruz MA, Faresjo M, Khamou AP, Larsson D. Inhibition of CYP27B1 and CYP24 increases the anti-proliferative effects of 25-hydroxyvitamin D3 in LNCaP cells. Anticancer Res. 2021;41:4733–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garcia-Olivares M, Romero-Cordoba S, Ortiz-Sanchez E, Garcia-Becerra R, Segovia-Mendoza M, Rangel-Escareno C, Halhali A, Larrea F, Barrera D. Regulation of anti-tumorigenic pathways by the combinatory treatment of calcitriol and TGF-beta in PC-3 and DU145 cells. J Steroid Biochem Mol Biol. 2021;209:105831.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McGrowder D, Tulloch-Reid MK, Coard KCM, McCaw-Binns AM, Ferguson TS, Aiken W, Harrison L, Anderson SG, Jackson MD. Vitamin D deficiency at diagnosis increases all-cause and prostate cancer-specific mortality in Jamaican men. Cancer Control. 2022;29:10732748221131225.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stroomberg HV, Vojdeman FJ, Madsen CM, Helgstrand JT, Schwarz P, Heegaard AM, Olsen A, Tjonneland A, Struer Lind B, Brasso K, Jorgensen HL, Roder MA. Vitamin D levels and the risk of prostate cancer and prostate cancer mortality. Acta Oncol. 2021;60:316–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abu El Maaty MA, Grelet E, Keime C, Rerra AI, Gantzer J, Emprou C, Terzic J, Lutzing R, Bornert JM, Laverny G, Metzger D. Single-cell analyses unravel cell type-specific responses to a vitamin D analog in prostatic precancerous lesions. Sci Adv. 2021;7.

  • Zhao S, Ye Z, Stanton R. Misuse of RPKM or TPM normalization when comparing across samples and sequencing protocols. RNA. 2020;26;903–9.

  • Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28:882–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov P J. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W. Smyth, limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Z, Lu Z, Li L, Ma M, Long F, Wu R, Huang L, Chou J, Yang K, Zhang Y, Li X, Hu G, Zhang Y, Lin C. Identification and validation of ferroptosis-related LncRNA signatures as a novel prognostic model for colon cancer. Front Immunol. 2021;12:783362.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao H, Tong H, Zhu J, Xie C, Qin Z, Li T, Liu X, He W. A glycolysis-based long non-coding RNA signature accurately predicts prognosis in renal carcinoma patients. Front Genet. 2021;12:638980.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(Suppl 4):S11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W, Trevino V, Shen H, Laird PW, Levine DA, Carter SL, Getz G, Stemke-Hale K, Mills GB, Verhaak RG. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.

    Article 
    PubMed 

    Google Scholar
     

  • Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y, Zhou R, Qiu W, Huang N, Sun L, Li X, Bin J, Liao Y, Shi M, Liao W. IOBR: multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front Immunol. 2021;12:687975.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, Dai W, Guo C. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res. 2020;39:126.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reinhold WC, Sunshine M, Liu H, Varma S, Kohn KW, Morris J, Doroshow J, Pommier Y. CellMiner: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. Cancer Res. 2012;72:3499–511.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeon SM, Shin EA. Exploring vitamin D metabolism and function in cancer. Exp Mol Med. 2018;50:1–14.

    PubMed 

    Google Scholar
     

  • Bailey CL, Kelly P, Casey PJ. Activation of Rap1 promotes prostate cancer metastasis. Cancer Res. 2009;69:4962–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah S, Brock EJ, Ji K, Mattingly RR. Ras and Rap1: a tale of two GTPases. Semin Cancer Biol. 2019;54:29–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bueno AC, More CB, Marrero-Gutierrez J, de Almeida ESDC, Leal LF, Montaldi AP, Ramalho FS, Vencio RZN, de Castro M, Antonini SRR. Vitamin D receptor activation is a feasible therapeutic target to impair adrenocortical tumorigenesis. Mol Cell Endocrinol. 2022;558:111757.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okrit F, Chantranuwatana P, Werawatganon D, Chayanupatkul M, Sanguanrungsirikul S. Changes of vitamin D receptors (VDR) and MAPK activation in cytoplasmic and nuclear fractions following exposure to cigarette smoke with or without filter in rats. Heliyon. 2021;7:e05927.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Leung DY, Richers BN, Liu Y, Remigio LK, Riches DW, Goleva E. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J Immunol. 2012;188:2127–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim DH, Meza CA, Clarke H, Kim JS, Hickner RC. Vitamin D and endothelial function. Nutrients. 2020;12.

  • Gisbert-Ferrandiz L, Cosin-Roger J, Hernandez C, Macias-Ceja DC, Ortiz-Masia D, Salvador P, Esplugues JV, Hinojosa J, Navarro F, Calatayud S, Barrachina MD. Diminished vitamin D receptor protein levels in Crohn’s disease fibroblasts: effects of vitamin D. Nutrients. 2020:12.


    Google Scholar
     

  • Szeles L, Keresztes G, Torocsik D, Balajthy Z, Krenacs L, Poliska S, Steinmeyer A, Zuegel U, Pruenster M, Rot A, Nagy L. 1,25-dihydroxyvitamin D3 is an autonomous regulator of the transcriptional changes leading to a tolerogenic dendritic cell phenotype. J Immunol. 2009;182:2074–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Charoenngam N, Holick MF. Immunologic effects of vitamin D on human health and disease. Nutrients. 2020;12.

  • Borkowski R, Du L, Zhao Z, McMillan E, Kosti A, Yang CR, Suraokar M, Wistuba II, Gazdar AF, Minna JD, White MA, Pertsemlidis A. Genetic mutation of p53 and suppression of the miR-17 approximately 92 cluster are synthetic lethal in non-small cell lung cancer due to upregulation of vitamin D signaling. Cancer Res. 2015;75:666–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teng M, Zhou S, Cai C, Lupien M, He HH. Pioneer of prostate cancer: past, present and the future of FOXA1. Protein Cell. 2021;12:29–38.

  • McCann JJ, Vasilevskaya IA, McNair C, Gallagher P, Neupane NP, de Leeuw R, Shafi AA, Dylgjeri E, Mandigo AC, Schiewer MJ, Knudsen KE. Mutant p53 elicits context-dependent pro-tumorigenic phenotypes. Oncogene. 2022;41:444–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaur HB, Lu J, Guedes LB, Maldonado L, Reitz L, Barber JR, De Marzo AM, Tomlins SA, Sfanos KS, Eisenberger M, Schaeffer EM, Joshu CE, Lotan TL. TP53 missense mutation is associated with increased tumor-infiltrating T cells in primary prostate cancer. Hum Pathol. 2019;87:95–102.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Song XL, Yu B, Foong LC, Shu Y, Mai CW, Hu J, Dong B, Xue W, Chua CW. TP53 loss-of-function causes vulnerability to autophagy inhibition in aggressive prostate cancer. Int J Urol. 2022;29:1085–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swami U, McFarland TR, Nussenzveig R, Agarwal N. Advanced prostate cancer: treatment advances and future directions. Trends Cancer. 2020;6:702–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng J, Wang Q, Zhang Y. Ideal vitamin D and handgrip strength counteracts the risk effect of APOE genotype on dementia: a population-based longitudinal study. J Transl Med. 2023;21:355.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghahremani M, Smith EE, Chen HY, Creese B, Goodarzi Z, Ismail Z. Vitamin D supplementation and incident dementia: effects of sex, APOE, and baseline cognitive status. Alzheimers Dement (Amst). 2023;15:e12404.

    Article 
    PubMed 

    Google Scholar
     

  • Soares JZ, Pettersen R, Benth JS, Persson K, Strobel C, Selbaek G, Bogdanovic N, Vitamin D, Levels. APOE Allele, and MRI volumetry assessed by NeuroQuant in Norwegian adults with cognitive symptoms. J Alzheimers Dis. 2021;79:311–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miao G, Zhuo D, Han X, Yao W, Liu C, Liu H, Cao H, Sun Y, Chen Z, Feng T. From degenerative disease to malignant tumors: insight to the function of ApoE. Biomed Pharmacother. 2023;158:114127.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ifere GO, Desmond R, Demark-Wahnefried W, Nagy TR. Apolipoprotein E gene polymorphism influences aggressive behavior in prostate cancer cells by deregulating cholesterol homeostasis. Int J Oncol. 2013;43:1002–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bancaro N, Cali B, Troiani M, Elia AR, Arzola RA, Attanasio G, Lai P, Crespo M, Gurel B, Pereira R, Guo C, Mosole S, Brina D, D’Ambrosio M, Pasquini E, Spataro C, Zagato E, Rinaldi A, Pedotti M, Di Lascio S, Meani F, Montopoli M, Ferrari M, Gallina A, Varani L, Pereira Mestre R, Bolis M, Gillessen Sommer S, de Bono J, Calcinotto A, Alimonti A. Apolipoprotein E induces pathogenic senescent-like myeloid cells in prostate cancer. Cancer Cell. 2023;41:602–e619611.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Description of Image

    Source link