Scientific Papers

Fine-grained image classification on bats using VGG16-CBAM: a practical example with 7 horseshoe bats taxa (CHIROPTERA: Rhinolophidae: Rhinolophus) from Southern China | Frontiers in Zoology

Description of Image

  • Wilson DE, Wilson DE, Mittermeier RA. Handbook of the mammals of the world. In: Bats, vol. 9. Barcelona: Lynx Ediciones; 2019.


    Google Scholar
     

  • Csorba G, Ujhelyi P, Thomas N. Horseshoe Bats of the World (Chiroptera: Rhinolophidae). Shropshire: Alana Books; 2003.


    Google Scholar
     

  • Guo WJ, Wu Y, He K, Hu YB, Wang XY, Yu WH. Unraveling the macroevolution of horseshoe bats (Chiroptera: Rhinolophidae: Rhinolophus). Zool Res. 2023;44:169.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu B, Zeng LP, Yang XL, Ge XY, Zhang W, Li B, Xie JZ, Shen XR, Zhang YZ, Wang N, Luo DS, Zheng XS, Wang MN, Daszak P, Wang LF, Cui J, Shi ZL. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS pathog. 2017;13:e1006698.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lau SK, Li KS, Huang Y, Shek CT, Tse H, Wang M, Choi GKY, Xu HF, Lam CSF, Guo RT, Chan KH, Zheng BJ, Woo PCY, Yuen KY. Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events. J Virol. 2010;84:2808–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moratelli R, Calisher CH. Bats and zoonotic viruses: can we confidently link bats with emerging deadly viruses? Mem Inst Oswaldo Cruz. 2015;110:1–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feijó A, Wang YQ, Sun J, Li FH, Wen ZX, Ge DY, Xia L, Yang QS. Research trends on bats in China: a twenty-first century review. Mamm Biol. 2019;98:163–72.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang TL, Zhao HB, He B, Zhang LB, Luo JH, Ying L, Sun KP, Yu WH, Wu Yi, Feng J. Research progress of bat biology and conservation strategies in China. Acta Theriol Sin. 2020;40:539–59.


    Google Scholar
     

  • Yu WH, He K, Fan PF, Chen BY, Li S, Liu SY, Zhou J, Yang QS, Li M, Jiang XL, Yang G, Wu SB, Lu XL, Hu YB, Li BG, Li YC, Jiang TL, Wei FW, Wu Y. Taxonomic and systematic research progress of mammals in China. Acta Theriol Sin. 2021;4:502–24.


    Google Scholar
     

  • Ferentinos KP. Deep learning models for plant disease detection and diagnosis. Comput Electron Agric. 2018;145:311–8.

    Article 

    Google Scholar
     

  • Liu W, Juhas M, Zhang Y. Fine-Grained Breast Cancer Classification with Bilinear Convolutional Neural Networks (BCNNs). Front Genet. 2020;11:547327.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinho C, Kaliontzopoulou A, Ferreira CA, Gama J. Identification of morphologically cryptic species with computer vision models: wall lizards (Squamata: Lacertidae: Podarcis) as a case study. Zool J Linn Soc. 2023;198:184–201.

    Article 

    Google Scholar
     

  • Shi H, Zhang R, Gang S. Fine-grained bird classification based on low-dimensional bilinear model. In: 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC). 2018. p. 424–8.


    Google Scholar
     

  • Shi C, Liu D, Cui Y, Xie J, Roberts NJ, Jiang G. Amur tiger stripes: individual identification based on deep convolutional neural network. Integr Zool. 2020;15:461–70.

    Article 
    PubMed 

    Google Scholar
     

  • Shi C, Xu J, Roberts NJ, Liu D, Jiang G. Individual automatic detection and identification of big cats with the combination of different body parts. Integr Zool. 2023;18:157–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wah C, Branson S, Welinder P, Perona P, Belongie S. he Caltech-UCSD Birds-200–2011 Dataset. Pasadena, CA: California Institute of Technology; 2011. Technical Report CNS-TR-2011–001.


    Google Scholar
     

  • Rana P, Sowmya A, Meijering E, Song Y. Data augmentation with improved regularisation and sampling for imbalanced blood cell image classification. Sci Rep. 2022;2020(12):18101.

    Article 

    Google Scholar
     

  • Peng Y, He X, Zhao J. Object-part attention model for fine-grained image classification. IEEE Trans Image Process. 2017;2017(27):1487–500.


    Google Scholar
     

  • Li Z, Li F, Zhu L, Yue J. Vegetable recognition and classification based on improved VGG deep learning network model. Int J Comput Intell Syst. 2020;2020(13):559–64.

    Article 

    Google Scholar
     

  • Guo ST, Xu PF, Miao QG, Shao GF, Chapman CA, Chen XJ, He G, Fang DY, Zhang H, Sun YW, Shi ZH, Li BG. Automatic identification of individual primates with deep learning techniques. Iscience. 2020;2020(23):101412.

    Article 

    Google Scholar
     

  • Woo S, Park J, Lee JY, Kweon IS. Cbam: Convolutional block attention module. Proceedings of the European conference on computer vision (ECCV). 2018. p. 3–19.


    Google Scholar
     

  • Zhang Y, Zhang X, Zhu W. ANC: Attention network for COVID-19 explainable diagnosis based on convolutional block attention module. C Model Eng Sci. 2021;127(3):1037–58.


    Google Scholar
     

  • Park J, Kim DI, Choi B, Kang W, Kwon HW. Classification and Morphological Analysis of Vector Mosquitoes using Deep Convolutional Neural Networks. Sci Rep. 2020;2020(10):1–12.


    Google Scholar
     

  • Wei F. Taxonomy and distribution of mammals in China. Sciences Press; 2022. p. 313–324.

  • Chen P, Liu S, Zhao H, Jia J. GridMask data augmentation. arXiv. 2020;2001:04086.


    Google Scholar
     

  • Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv. 2014;1409.1556.

  • Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. 2015. p. 448–456.

  • Yang H, Ni J, Gao J, Han Z, Luan T. A novel method for peanut variety identification and classification by Improved VGG16. Sci Rep. 2021;11:1–17.


    Google Scholar
     

  • Lin M, Chen Q, Yan S. Network in network. arXiv preprint arXiv. 2013;1312.4400.

  • Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. Proceedings of the IEEE international conference on computer vision. 2017. p. 618–26.


    Google Scholar
     

  • Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Commun ACM. 2017;60(6):84–90.

  • Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L. MobileNetV2: Inverted Residuals and Linear Bottlenecks. Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. p. 4510–20.


    Google Scholar
     

  • He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. p. 770–8.


    Google Scholar
     

  • Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. 2020.

  • Jalal A, Salman A, Mian A, Shortis M, Shafait F. Fish detection and species classification in underwater environments using deep learning with temporal information. Ecol Inform. 2020;57:101088.

    Article 

    Google Scholar
     

  • Miele V, Dussert G, Cucchi T, Renaud S. Deep learning for species identification of modern and fossil rodent molars. BioRxiv. 2020;20.259176.

  • Ferreira AC, Silva LR, Renna F, Brandl HB, Renoult JP, Farine DR, Covas R, Doutrelant C. Deep learning-based methods for individual recognition in small birds. Methods Ecol Evol. 2020;11:1072–85.

    Article 

    Google Scholar
     

  • Schofield D, Nagrani A, Zisserman A, Hayashi M, Matsuzawa T, Biro D, Carvalho S. Chimpanzee face recognition from videos in the wild using deep learning. Sci Adv. 2019;2019(5):eaaw0736.

    Article 

    Google Scholar
     

  • Zuerl M, Philip S, Ingrid B, Raab R, Zanca D, Kabri S, Happold J, Heiko N, Prechtel K, Wuensch S, Krause M, Seegerer S, Fersen L, Eskofier B. Automated video-based analysis framework for behavior monitoring of individual animals in zoos using deep learning-a study on polar bears. Animals. 2022;2022(12):692.

    Article 

    Google Scholar
     

  • Bangare S, Rajankar H, Patil P, Nakum K, Paraskar G. Pneumonia detection and classification using CNN and VGG16. Int J Adv Res Sci Commun Technol. 2022;12:771–9.

    Article 

    Google Scholar
     

  • Hridayami P, Putra IK, Wibawa KS. Fish species recognition using VGG16 deep convolutional neural network. J Comput Sci Eng. 2019;13:124–30.

    Article 

    Google Scholar
     

  • Jiang ZP, Liu YY, Shao ZE, Huang KW. An improved VGG16 model for pneumonia image classification. Appl Sci. 2021;11:11185.

    Article 
    CAS 

    Google Scholar
     

  • Mu Y, Sun Y, Hu T, Gong H, Tyasi TL. Improved Model of Eye Disease Recognition Based on VGG Model. Intell Autom Soft Comput. 2021;68:729–37.

    Article 

    Google Scholar
     

  • Kostrikov I, Denis Y, Rob F. Image augmentation is all you need: regularizing deep reinforcement learning from pixels. arXiv preprint arXiv. 2021;2004.13649.

  • Jung AB. “Imgaug”. 2018. Available: https://github.com/aleju/imgaug

  • Jiang W, Zhang K, Wang N, Yu M. MeshCut data augmentation for deep learning in computer vision. PLoS One. 2020;15:e0243613.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noe SM, Zin TT, Tin P, Kobayashi I. Automatic detection and tracking of mounting behavior in cattle using a deep learning-based instance segmentation model. Int J Innov Comput Inf Control. 2022;18:211–20.


    Google Scholar
     

  • Rigoudy N, Dussert G, Benyoub A, Besnard A, Birck C, Boyer J, Bollet Y, Bunz Y, Caussimont G, Chetouane E, Carriburu JC, Cornette P, Delestrade A, Backer ND, Dispan L, Barh ML, Duhayer J, Elder JF, Fanjul JB, Fonderflick J, Froustey N, Garel M, Gaudry W, Gérard A, Gimenez O, Hemery A, Hemon A, Jullien JM, Knitter D, Malafosse I, Marginean M, Ménard L, Ouvrier A, Pariset G, Prunet V, Rabault J, Randon M, Raulet Y, Régnier A, Ribière R, Ricci JC, Ruette S, Schneylin Y, Sentilles J, Siefert N, Smith B, Terpereau G, Touchet P, Thuiller W, Uzal A, Vautrain V, Vimal R, Weber J, Spataro B, Miele V, Chamaillé-Jammes V. The DeepFaune initiative: a collaborative effort towards the automatic identification of the French fauna in camera-trap images. bioRxiv. 2022;15.484324.

  • Wang H, Shang S, Wang D, He X, Feng K, Zhu H, Li C, Wang Y. Optimized lightweight CA-transformer: Using transformer for fine-grained visual categorization. Ecol Inform. 2022;71:101827.

    Article 

    Google Scholar
     

  • Yu C, Hu Z, Han B, Dai Y, Zhao Y, Deng Y. An intelligent measurement scheme for basic characters of fish in smart aquaculture. Comput Electron Agric. 2023;204:107506.

    Article 

    Google Scholar
     

  • Shorten C, Taghi M. A Survey on image data augmentation for deep learning. J Big Data. 2019;6:60.

    Article 

    Google Scholar
     

  • Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In: European conference on computer vision. Cham: Springer; 2014. p. 818–833.

  • Qin Z, Yu F, Liu C, Chen X. How convolutional neural network see the world-A survey of convolutional neural network visualization methods. arXiv preprint arXiv. 2018;1804.11191.

  • Panwar H, Gupta PK, Siddiqui MK, Morales-Menendez R, Bhardwaj P, Singh V. A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-scan images. Chaos Solitons Fractals. 2020;140:110190.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rawat W, Wang ZH. Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 2017;29:2352–449.

    Article 
    PubMed 

    Google Scholar
     

  • Sinha D, Mohamed ES. MobileNet: An enhanced MobileNet architecture. In: 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). 2019. p. 0280–5.

    Chapter 

    Google Scholar
     

  • Description of Image

    Source link