Scientific Papers

Molecular analysis of scats revealed diet and prey choice of grey wolves and Eurasian lynx in the contact zone between the Dinaric Mountains and the Alps | Frontiers in Zoology


  • Ritchie EG, Johnson CN. Predator interactions, mesopredator release and biodiversity conservation. Ecol Lett. 2009;12:982–98. https://doi.org/10.1111/j.1461-0248.2009.01347.x.

    Article 
    PubMed 

    Google Scholar
     

  • Zlatanova D, Ahmed A, Valasseva A, Genov P. Adaptive diet strategy of the wolf (Canis lupus L.) in Europe: a review. Acta Zool Bulg. 2014;66:439–52.


    Google Scholar
     

  • Skogland T. What are the effects of predators on large ungulate populations? Oikos. 1991;61:401–11. https://doi.org/10.2307/3545248.

    Article 
    ADS 

    Google Scholar
     

  • Ormerod SJ. Applied issues with predators and predation: editor’s introduction. J Appl Ecol. 2002;39:181–8. https://doi.org/10.1046/j.1365-2664.2002.00722.x.

    Article 

    Google Scholar
     

  • Meriggi A, Lovari S. A Review of wolf predation in southern Europe: Does the wolf prefer wild prey to livestock? J Appl Ecol. 1996;33:1561–71. https://doi.org/10.2307/2404794.

    Article 

    Google Scholar
     

  • Schmidt K, Jędrzejewski W, Okarma H, Kowalczyk R. Spatial interactions between grey wolves and Eurasian lynx in Białowieża Primeval Forest. Poland Ecol Res. 2009;24:207–14. https://doi.org/10.1007/s11284-008-0496-y.

    Article 

    Google Scholar
     

  • Crête M, Manseau M. Natural regulation of cervidae along a 1000 km latitudinal gradient: change in trophic dominance. Evol Ecol. 1996;10:51–62. https://doi.org/10.1007/BF01239346.

    Article 

    Google Scholar
     

  • Preisser EL, Bolnick DI, Benard MF. Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology. 2005;86:501–9. https://doi.org/10.1890/04-0719.

    Article 

    Google Scholar
     

  • Hebblewhite M, Merrill EH, McDonald TL. Spatial decomposition of predation risk using resource selection functions: an example in a wolf-elk predator-prey system. Oikos. 2005;111:101–11. https://doi.org/10.1111/j.0030-1299.2005.13858.x.

    Article 
    ADS 

    Google Scholar
     

  • Creel S, Christianson D. Relationships between direct predation and risk effects. Trends Ecol Evol. 2008;23:194–201. https://doi.org/10.1016/j.tree.2007.12.004.

    Article 
    PubMed 

    Google Scholar
     

  • Creel S, Becker M, Dröge E, M’soka J, Matandiko W, Rosenblatt E, et al. What explains variation in the strength of behavioral responses to predation risk? A standardized test with large carnivore and ungulate guilds in three ecosystems. Biol Conserv. 2019;232:164–72. https://doi.org/10.1016/j.biocon.2019.02.012.

    Article 

    Google Scholar
     

  • Lima SL. Nonlethal effects in the ecology of predator-prey interactions. Bioscience. 1998;48:25–34. https://doi.org/10.2307/1313225.

    Article 

    Google Scholar
     

  • Boonstra R, Hik D, Singleton GR, Tlnnikov A. The impact of predator-induced stress on the snowshoe hare cycle. Ecol Monogr. 1998;68:371–94. https://doi.org/10.1890/0012-9615(1998)068[0371:TIOPIS]2.0.CO;2.

    Article 

    Google Scholar
     

  • Lima SL, Dill LM. Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool. 1990;68:619–40. https://doi.org/10.1139/z90-092.

    Article 

    Google Scholar
     

  • Gehr B, Hofer EJ, Pewsner M, Ryser A, Vimercati E, Vogt K, et al. Hunting-mediated predator facilitation and superadditive mortality in a European ungulate. Ecol Evol. 2018;8:109–19. https://doi.org/10.1002/ece3.364.

    Article 
    PubMed 

    Google Scholar
     

  • Okarma H, Jędrzejewski W, Schmidt K, Kowalczyk R, Jędrzejewska B. Predation of Eurasian lynx on roe deer and red deer in Bialowieza Primeral Forest, Poland. Acta Theriol (Warsz). 1997;42:203–24. https://doi.org/10.4098/AT.arch.97-22.

    Article 

    Google Scholar
     

  • Schmidt K. Behavioural and spatial adaptation of the Eurasian lynx to a decline in prey availability. Acta Theriol (Warsz). 2008;53:1–16. https://doi.org/10.1007/BF03194274.

    Article 

    Google Scholar
     

  • Adams L. Wolves: behavior, ecology, and conservation. J Wildl Manage. 2004;68:739–40. https://doi.org/10.2193/0022-541x(2004)068[0739:wbeac]2.0.co;2.

    Article 

    Google Scholar
     

  • Salvador A, Abad PL. Food habits of a wolf population (Canis lupus) in León province. Spain Mamm. 1987;51:45–52. https://doi.org/10.1515/mamm.1987.51.1.45.

    Article 

    Google Scholar
     

  • Sin T, Gazzola A, Chiriac S, Rîșnoveanu G. Wolf diet and prey selection in the South-Eastern Carpathian Mountains, Romania. PLoS ONE. 2019;14: e0225424. https://doi.org/10.1371/journal.pone.0225424.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Octenjak D, Pađen L, Šilić V, Reljić S, Vukičević TT, Kusak J. Wolf diet and prey selection in Croatia. Mamm Res. 2020;65:647–54. https://doi.org/10.1007/s13364-020-00517-8.

    Article 

    Google Scholar
     

  • Janeiro-Otero A, Álvarez X, Fernández Crespo C, Valero E, Dormann CF. Grey wolf feeding habits and their geographical variation in Northwest Spain. Food Webs. 2022;32: e00248. https://doi.org/10.1016/j.fooweb.2022.e00248.

    Article 

    Google Scholar
     

  • Meriggi A, Dagradi V, Dondina O, Perversi M, Milanesi P, Lombardini M, et al. Short-term responses of Wolf feeding habits to changes of wild and domestic ungulate abundance in Northern Italy. Ethol Ecol Evol. 2015;27:389–411. https://doi.org/10.1080/03949370.2014.986768.

    Article 

    Google Scholar
     

  • Milanesi P, Meriggi A, Merli E. Selection of wild ungulates by wolves Canis lupus (L. 1758) in an area of the Northern Apennines (North Italy). Ethol Ecol Evol. 2012;24:81–96. https://doi.org/10.1080/03949370.2011.592220.

    Article 

    Google Scholar
     

  • Ferretti F, Lovari S, Mancino V, Burrini L, Rossa M. Food habits of wolves and selection of wild ungulates in a prey-rich Mediterranean coastal area. Mamm Biol. 2019;99:119–27. https://doi.org/10.1016/j.mambio.2019.10.008.

    Article 

    Google Scholar
     

  • Fuller TK. Population dynamics of wolves in north-central Minnesota. Wildl Monogr. 1989;7:3–41.


    Google Scholar
     

  • Newsome TM, Boitani L, Chapron G, Ciucci P, Dickman CR, Dellinger JA, et al. Food habits of the world’s grey wolves. Mamm Rev. 2016;46:255–69. https://doi.org/10.1111/mam.12067.

    Article 

    Google Scholar
     

  • Newsome TM, Ripple WJ. A continental scale trophic cascade from wolves through coyotes to foxes. J Anim Ecol. 2015;84:49–59. https://doi.org/10.1111/1365-2656.12258.

    Article 
    PubMed 

    Google Scholar
     

  • Figueiredo AM, Valente AM, Barros T, Carvalho J, Silva DAM, Fonseca C, et al. What does the wolf eat? Assessing the diet of the endangered Iberian wolf (Canis lupus signatus) in northeast Portugal. PLoS ONE. 2020;15: e0230433. https://doi.org/10.1371/journal.pone.0230433.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trbojević I, Penezić A, Kusak J, Stevanović O, Ćirović D. Wolf diet and livestock depredation in North Bosnia and Herzegovina. Mamm Biol. 2020;100:499–504. https://doi.org/10.1007/s42991-020-00053-7.

    Article 

    Google Scholar
     

  • Torres RT, Silva N, Brotas G, Fonseca C. To eat or not to eat? The diet of the dndangered Iberian wolf (Canis lupus signatus) in a human-dominated landscape in central Portugal. PLoS ONE. 2015;10: e0129379. https://doi.org/10.1371/journal.pone.0129379.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ståhlberg S, Bassi E, Viviani V, Apollonio M. Quantifying prey selection of northern and southern European wolves (Canis lupus). Mamm Biol. 2017;83:34–43. https://doi.org/10.1016/j.mambio.2016.11.001.

    Article 

    Google Scholar
     

  • Migli D, Youlatos D, Iliopoulos Y. Winter food habits of wolves in central Greece. J Biol Res. 2005;4:217–20.


    Google Scholar
     

  • Vos J. Food habits and livestock depredation of two Iberian wolf packs (Canis lupus signatus) in the north of Portugal. J Zool. 2000;251:457–62. https://doi.org/10.1017/S0952836900008050.

    Article 

    Google Scholar
     

  • Ciucci P, Boitani L. Wolf and dog depredation on livestock in central Italy. Wildl Soc Bull. 1998;26:504–14.


    Google Scholar
     

  • Jędrzejewska B, Jędrzejewski W. Predation in vertebrate communities. The Bialowieia Primeval Forest as a case study. In: Ecological studies. 1998;135–9.

  • Andren H, Liberg O. Large impact of Eurasian lynx predation on roe deer population dynamics. PLoS ONE. 2015;10: e0120570. https://doi.org/10.1371/journal.pone.0120570.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aanes R, Linnell JDC, Perzanowski K, Karlsen J, Odden J. Roe deer as prey. In: The European roe deer: the biology of success. Scandinavian University Press Oslo; 1998. p. 376

  • Haglund B. Winter habits of the lynx (Lynx lynx L.) and wolverine (Gulo gulo L.) as revealed by tracking in the snow. Viltrevy. 1966;4:81–229

  • Gervasi V, Nilsen EB, Odden J, Bouyer Y, Linnell JDC. The spatio-temporal distribution of wild and domestic ungulates modulates lynx kill rates in a multi-use landscape. J Zool. 2014;292:175–83. https://doi.org/10.1111/jzo.12088.

    Article 

    Google Scholar
     

  • Nilsen EB, Linnell JDC, Odden J, Andersen R. Climate, season, and social status modulate the functional response of an efficient stalking predator: the Eurasian lynx. J Anim Ecol. 2009;78:741–51. https://doi.org/10.1111/j.1365-2656.2009.01547.x.

    Article 
    PubMed 

    Google Scholar
     

  • Odden J, Linnell JDC, Andersen R. Diet of Eurasian lynx, (Lynx lynx), in the boreal forest of southeastern Norway: the relative importance of livestock and hares at low roe deer density. Eur J Wildl Res. 2006;52:237–44. https://doi.org/10.1007/s10344-006-0052-4.

    Article 

    Google Scholar
     

  • Molinari-Jobin A, Molinari P, Breitenmoser-Würsten C, Breitenmoser U. Significance of lynx (Lynx lynx) predation for roe deer (Capreolus capreolus) and chamois (Rupicapra rupicapra) mortality in the Swiss Jura Mountains. Wildl Biol. 2002;8:109–15. https://doi.org/10.2981/wlb.2002.015.

    Article 

    Google Scholar
     

  • Jedrzejewski W, Schmidt K, Milkowski L, Jedrzejewska B, Okarma H. Foraging by lynx and its role in ungulate mortality: the local (Bialowieza Forest) and the palaearctic viewpoints. Acta Theriol (Warsz). 1993;38:385–403. https://doi.org/10.4098/AT.arch.93-30.

    Article 

    Google Scholar
     

  • Okarma H. The trophic ecology of wolves and their predatory role in ungulate communities of forest ecosystems in Europe. Acta Theriol (Warsz). 1995;40:335–86. https://doi.org/10.4098/AT.arch.95-35.

    Article 

    Google Scholar
     

  • Paquet PC, Carbyn LN. Gray wolf, Wild mammals of North America: biology, management, and conservation. Baltimore: John Hopkins University Press; 2003. p. 78–84.


    Google Scholar
     

  • Peterson RO, Ciucci P. The wolf as a carnivore. In: Mech LD, Boitani L, editors. Wolves: behavior, ecology, and conservation. Chicago: University of Chicago Press; 2003. p. 104–30.


    Google Scholar
     

  • Jobin A, Molinari P, Breitenmoser U. Prey spectrum, prey preference and consumption rates of Eurasian lynx in the Swiss Jura Mountains. Acta Theriol (Warsz). 2000;45:243–52. https://doi.org/10.4098/AT.arch.00-26.

    Article 

    Google Scholar
     

  • Krofel M, Kos I. Analiza vsebine iztrebkov volka (Canis lupus) v Sloveniji — Scat analysis of gray wolves (Canis lupus) in Slovenia. Zbornik gozdarstva in lesarstva. 2010;91:85–8.


    Google Scholar
     

  • Rajkovič M. Analiza zimskega gibanja volka v Dinaridih. Master’s thesis, University of Ljubljana; 2016.

  • Adamič M, Kobler A, Berce M. The return of the wolf (Canis lupus) into its historic range in Slovenia-is there any place left and how to reach it? Zbornik gozdarstva in lesarstva. 1998;57:235–54.


    Google Scholar
     

  • Rajkovič M, Ražen N, Kos I, Potočnik H, Krofel M, Kljun F. Winter structure of wolf (Canis lupus) prey and kleptoparasitism on the wolf prey in the Dinaric Mountains. Zlatorogov zbornik . 2018;V:2–16. https://clan.lovska-zveza.si/userfiles/Zlatorogov%20zbornik_2018.pdf.

  • Rot A, Černe R, Bartol M, Stergar M. Upoštevanje velikih zveri pri upravljanju parkljaste divjadi. Ljubljana; 2022. Akcija C.10.

  • Krofel M, Huber D, Kos I. Diet of Eurasian lynx (Lynx lynx) in the northern Dinaric Mountains (Slovenia and Croatia). Acta Theriol (Warsz). 2011;56:315–22. https://doi.org/10.1007/s13364-011-0032-2.

    Article 

    Google Scholar
     

  • Monterroso P, Godinho R, Oliveira T, Ferreras P, Kelly MJ, Morin DJ, et al. Feeding ecological knowledge: the underutilised power of faecal DNA approaches for carnivore diet analysis. Mamm Rev. 2019;49:97–112. https://doi.org/10.1111/mam.12144.

    Article 

    Google Scholar
     

  • Klare U, Kamler JF, MacDonald DW. A comparison and critique of different scat-analysis methods for determining carnivore diet. Mamm Rev. 2011;41:294–312. https://doi.org/10.1111/j.1365-2907.2011.00183.x.

    Article 

    Google Scholar
     

  • Spaulding R, Krausman P. Observer bias and analysis of gray wolf diets from scats. Wildl Soc Bull. 2000;28:947–50.


    Google Scholar
     

  • Morin DJ, Higdon SD, Lonsinger RC, Gosselin EN, Kelly MJ, Waits LP. Comparing methods of estimating carnivore diets with uncertainty and imperfect detection. Wildl Soc Bull. 2019;43:651–60. https://doi.org/10.1002/wsb.1021.

    Article 

    Google Scholar
     

  • Marucco F, Pletscher DH, Boitani L. Accuracy of scat sampling for carnivore diet analysis: wolves in the Alps as a case study. J Mammal. 2008;89:665–73. https://doi.org/10.1644/07-MAMM-A-005R3.1.

    Article 

    Google Scholar
     

  • Lockie JD. The estimation of the food of foxes. J Wildl Manag. 1959;23:224–7. https://doi.org/10.2307/3797647.

    Article 

    Google Scholar
     

  • Casper RM, Jarman SN, Deagle BE, Gales NJ, Hindell MA. Detecting prey from DNA in predator scats: a comparison with morphological analysis, using Arctocephalus seals fed a known diet. J Exp Mar Biol Ecol. 2007;347:144–54. https://doi.org/10.1016/j.jembe.2007.04.002.

    Article 

    Google Scholar
     

  • Carrera R, Ballard W, Gipson P, Kelly BT, Krausman PR, Wallace MC, et al. Comparison of Mexican wolf and coyote diets in Arizona and New Mexico. J Wildl Manag. 2008;72:376–81. https://doi.org/10.2193/2007-012.

    Article 

    Google Scholar
     

  • Gable TD, Windels SK, Bruggink JG, Barber-Meyer SM. Weekly summer diet of gray wolves (Canis lupus) in Northeastern Minnesota. Am Midl Nat. 2018;179:15–27. https://doi.org/10.1674/0003-0031-179.1.15.

    Article 

    Google Scholar
     

  • Wasser SK, Keim JL, Taper ML, Lele SR. The influences of wolf predation, habitat loss, and human activity on caribou and moose in the Alberta oil sands. Front Ecol Environ. 2011;9:546–51. https://doi.org/10.1890/100071.

    Article 

    Google Scholar
     

  • Reynolds JC, Aebischer NJ. Comparison and quantification of carnivore diet by faecal analysis: a critique, with recommendations, based on a study of the Fox (Vulpes vulpes). Mamm Rev. 1991;21:97–122. https://doi.org/10.1111/j.1365-2907.1991.tb00113.x.

    Article 

    Google Scholar
     

  • Ciucci P, Boitani L, Pelliccioni ER, Rocco M, Guy I. A comparison of scat-analysis methods to assess the diet of the wolf (Canis lupus). Wildl Biol. 1996;2:37–48. https://doi.org/10.2981/wlb.1996.006.

    Article 

    Google Scholar
     

  • Di Bernardi C, Wikenros C, Hedmark E, Boitani L, Ciucci P, Sand H, et al. Multiple species-specific molecular markers using nanofluidic array as a tool to detect prey DNA from carnivore scats. Ecol Evol. 2021;11:11739–48. https://doi.org/10.1002/ece3.7918.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shores C, Mondol S, Wasser SK. Comparison of DNA and hair-based approaches to dietary analysis of free-ranging wolves (Canis lupus). Conserv Genet Resour. 2015;7:871–8. https://doi.org/10.1007/s12686-015-0504-9.

    Article 

    Google Scholar
     

  • Mumma MA, Adams JR, Zieminski C, Fuller TK, Mahoney SP, Waits LP. A comparison of morphological and molecular diet analyses of predator scats. J Mammal. 2016;97:112–20. https://doi.org/10.1093/jmammal/gyv160.

    Article 

    Google Scholar
     

  • Nørgaard L, Olesen CR, Trøjelsgaard K, Pertoldi C, Nielsen JL, Taberlet P, et al. eDNA metabarcoding for biodiversity assessment, generalist predators as sampling assistants. Sci Rep. 2021;11:6820. https://doi.org/10.1038/s41598-021-85488-9.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gosselin EN, Lonsinger RC, Waits LP. Comparing morphological and molecular diet analyses and fecal DNA sampling protocols for a terrestrial carnivore. Wildl Soc Bull. 2017;41:362–9. https://doi.org/10.1002/wsb.749.

    Article 

    Google Scholar
     

  • King RA, Read DS, Traugott M, Symondson WOC. Molecular analysis of predation: a review of best practice for DNA-based approaches. Mol Ecol. 2008;17:947–63. https://doi.org/10.1111/j.1365-294X.2007.03613.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oehm J, Juen A, Nagiller K, Neuhauser S, Traugott M. Molecular scatology: how to improve prey DNA detection success in avian faeces? Mol Ecol Resour. 2011;11:620–8. https://doi.org/10.1111/j.1755-0998.2011.03001.x.

    Article 
    PubMed 

    Google Scholar
     

  • Massey AL, Roffler GH, Vermeul T, Allen JM, Levi T. Comparison of mechanical sorting and DNA metabarcoding for diet analysis with fresh and degraded wolf scats. Ecosphere. 2021;12: e03557. https://doi.org/10.1002/ecs2.3557.

    Article 

    Google Scholar
     

  • Jarman SN, McInnes JC, Faux C, Polanowski AM, Marthick J, Deagle BE, et al. Adélie penguin population diet monitoring by analysis of food DNA in scats. PLoS ONE. 2013;8: e82227. https://doi.org/10.1371/journal.pone.0082227.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kartzinel TR, Pringle RM. Molecular detection of invertebrate prey in vertebrate diets: trophic ecology of Caribbean island lizards. Mol Ecol Resour. 2015;15:903–14. https://doi.org/10.1111/1755-0998.12366.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Barba M, Adams JR, Goldberg CS, Stansbury CR, Arias D, et al. Molecular species identification for multiple carnivores. Conserv Genet Resour. 2014;6:821–4. https://doi.org/10.1007/s12686-014-0257-x.

    Article 

    Google Scholar
     

  • Shehzad W, Riaz T, Nawaz MA, Miquel C, Poillot C, Shah SA, et al. Carnivore diet analysis based on next-generation sequencing: application to the leopard cat (Prionailurus bengalensis) in Pakistan. Mol Ecol. 2012;21:1951–65. https://doi.org/10.1111/j.1365-294X.2011.05424.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simon C, Buckley TR, Frati F, Stewart JB, Beckenbach AT. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annu Rev Ecol Evol Syst. 2006;37:545–79. https://doi.org/10.1146/annurev.ecolsys.37.091305.110018.

    Article 

    Google Scholar
     

  • Yang L, Tan Z, Wang D, Xue L, Guan M, Huang T, et al. Species identification through mitochondrial rRNA genetic analysis. Sci Rep. 2014;4:4089. https://doi.org/10.1038/srep04089.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Y, Hoareau Y, Reese EM, Wasser SK. Prey partitioning between sympatric wild carnivores revealed by DNA metabarcoding: a case study on wolf (Canis lupus) and coyote (Canis latrans) in northeastern Washington. Conserv Genet. 2021;22:293–305. https://doi.org/10.1007/s10592-021-01337-2.

    Article 
    CAS 

    Google Scholar
     

  • Roffler GH, Allen JM, Massey A, Levi T. Metabarcoding of fecal DNA shows dietary diversification in wolves substitutes for ungulates in an island archipelago. Ecosphere. 2021;12: e03297. https://doi.org/10.1002/ecs2.3297.

    Article 

    Google Scholar
     

  • Thuo D, Furlan E, Broekhuis F, Kamau J, Macdonald K, Gleeson DM. Food from faeces: evaluating the efficacy of scat DNA metabarcoding in dietary analyses. PLoS ONE. 2019;14: e0225805. https://doi.org/10.1371/journal.pone.0225805.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eriksson P, Mourkas E, González-Acuna D, Olsen B, Ellström P. Evaluation and optimization of microbial DNA extraction from fecal samples of wild Antarctic bird species. Infect Ecol Epidemiol. 2017;7:1386536. https://doi.org/10.1080/20008686.2017.1386536.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McInnes JC, Alderman R, Deagle BE, Lea MA, Raymond B, Jarman SN. Optimised scat collection protocols for dietary DNA metabarcoding in vertebrates. Methods Ecol Evol. 2017;8:192–202. https://doi.org/10.1111/2041-210X.12677.

    Article 

    Google Scholar
     

  • Binladen J, Gilbert MTP, Bollback JP, Panitz F, Bendixen C, Nielsen R, et al. The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS ONE. 2007;2: e197. https://doi.org/10.1371/journal.pone.0000197.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nichols RV, Åkesson M, Kjellander P. Diet assessment based on rumen contents: a comparison between DNA metabarcoding and macroscopy. PLoS ONE. 2016;11: e0157977. https://doi.org/10.1371/journal.pone.0157977.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biffi M, Gillet F, Laffaille P, Colas F, Aulagnier S, Blanc F, et al. Novel insights into the diet of the Pyrenean desman (Galemys pyrenaicus) using next-generation sequencing molecular analyses. J Mammal. 2017;98:1497–507. https://doi.org/10.1093/jmammal/gyx070.

    Article 

    Google Scholar
     

  • De Groot GA, Nowak C, Skrbinšek T, Andersen LW, Aspi J, Fumagalli L, et al. Decades of population genetic research reveal the need for harmonization of molecular markers: the grey wolf Canis lupus as a case study. Mamm Rev. 2016;46:44–59. https://doi.org/10.1111/mam.12052.

    Article 

    Google Scholar
     

  • Menotti-Raymond MA, David VA, Wachter LL, Butler JM, O’Brien SJ. An STR forensic typing system for genetic individualization of domestic cat (Felis catus) samples. J Forensic Sci. 2005;50:1061–70 (PMID: 16225210).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valentini A, Miquel C, Nawaz MA, Bellemain E, Coissac E, Pompanon F, et al. New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trn L approach. Mol Ecol Resour. 2009;9:51–60. https://doi.org/10.1111/j.1755-0998.2008.02352.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riaz T, Shehzad W, Viari A, Pompanon F, Taberlet P, Coissac E. ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res. 2011;39:e145–e145. https://doi.org/10.1093/nar/gkr732.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7. https://doi.org/10.1038/s41587-019-0209-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2. https://doi.org/10.14806/ej.17.1.200.

    Article 

    Google Scholar
     

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. https://doi.org/10.1038/nmeth.3869.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robeson MS, O’Rourke DR, Kaehler BD, Ziemski M, Dillon MR, et al. RESCRIPt: reproducible sequence taxonomy reference database management. PLoS Comp Biol. 2021;11: e1009581. https://doi.org/10.1371/journal.pcbi.1009581.

    Article 
    CAS 

    Google Scholar
     

  • Kryštufek B. Sesalci Slovenije. Prirodoslovni muzej Slovenije; 1991. p. 294.

  • R Core Team. R core team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2021. http://www.R-project.org

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara RB, et al. Vegan: an R package for community ecologists. 2022; R Package Version 2.6-4.

  • Bray JR, Curtis JT. An Ordination of the upland forest communities of southern Wisconsin. Ecol Monogr. 1957;27:326–49. https://doi.org/10.2307/1942268.

    Article 

    Google Scholar
     

  • Shepard RN. The analysis of proximities: multidimensional scaling with an unknown distance function. II. Psychometrika. 1962;27:219–46. https://doi.org/10.1007/BF02289621.

    Article 
    MathSciNet 

    Google Scholar
     

  • Shepard RN. The analysis of proximities: Multidimensional scaling with an unknown distance function. I. Psychometrika. 1962;27:125–40. https://doi.org/10.1007/BF02289630.

    Article 
    MathSciNet 

    Google Scholar
     

  • Clarke KR. Non-parametric multivariate analyses of changes in community structure. Aust J Ecol. 1993;18:117–43. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x.

    Article 

    Google Scholar
     

  • Palmegiani I, Gazzola A, Apollonio M. Wolf diet and its impact on the ungulates community in a new recolonized area of Western Alps: Gran Paradiso National Park. Folia Zool Brno. 2013;62:59–66. https://doi.org/10.25225/fozo.v62.i1.a9.2013.

    Article 

    Google Scholar
     

  • Fležar U, Aronsson M, Černe R, Pičulin A, Bartol M, Aronsson M, et al. Using heterogeneous camera-trapping sites to obtain the first density estimates for the transboundary Eurasian lynx (Lynx lynx) population in the Dinaric Mountains. Biodivers Conserv. 2023;32:3199–216. https://doi.org/10.1007/s10531-023-02646-3.

    Article 

    Google Scholar
     

  • Molinari-Jobin A, Zimmermann F, Ryser A, Breitenmoser-Würsten C, Capt S, Breitenmoser U, et al. Variation in diet, prey selectivity and home-range size of Eurasian lynx (Lynx lynx) in Switzerland. Wildl Biol. 2007;13:393–405. https://doi.org/10.2981/0909-6396(2007)13[393:VIDPSA]2.0.CO;2.

    Article 

    Google Scholar
     

  • Bartol M, Černe R, Črtalič J, Hanc Ž, Hočevar L, Hočevar Š, et al. Spremljanje stanja ohranjenosti volkov v Sloveniji v sezoni 2020–2021, končno poročilo. Ljubljana.

  • Donadio E, Buskirk SW. Diet, morphology, and interspecific killing in carnivora. Am Nat. 2006;167:524–36. https://doi.org/10.1086/501033.

    Article 
    PubMed 

    Google Scholar
     

  • Sunde P, Overskaug K, Kvam T. Intraguild predation of lynxes on foxes: evidence of interference competition? Ecography. 1999;22:521–3. https://doi.org/10.1111/j.1600-0587.1999.tb01281.x.

    Article 
    ADS 

    Google Scholar
     

  • Mori E, Benatti L, Lovari S, Ferretti F. What does the wild boar mean to the wolf? Eur J Wildl Res. 2017;63:1–5. https://doi.org/10.1007/s10344-016-1060-7.

    Article 

    Google Scholar
     

  • Oslis. Osrednji slovenskegi lovski informacijski system. Gozdarski inštitut Slovenije. 2013. http://oslis.gozdis.si/.

  • Nordberg EJ, Schwarzkopf L. Predation risk is a function of alternative prey availability rather than predator abundance in a tropical savanna woodland ecosystem. Sci Rep. 2019;9:7718. https://doi.org/10.1038/s41598-019-44159-6.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Randa LA, Cooper DM, Meserve PL, Yunger JA. Prey switching of sympatric canids in response to variable prey abundance. J Mammal. 2009;90:594–603. https://doi.org/10.1644/08-MAMM-A-092R1.1.

    Article 

    Google Scholar
     

  • Levänen R, Thulin CG, Spong G, Pohjoismäki JLO. Widespread introgression of mountain hare genes into Fennoscandian brown hare populations. PLoS ONE. 2018;13: e0191790. https://doi.org/10.1371/journal.pone.0191790.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fredsted T, Wincentz T, Villesen P. Introgression of mountain hare (Lepus timidus) mitochondrial DNA into wild brown hares (Lepus europaeus) in Denmark. BMC Ecol. 2006;6:1–6. https://doi.org/10.1186/1472-6785-6-17.

    Article 
    CAS 

    Google Scholar
     

  • Linnell JDC, Andersen R, Kvam T, Andrén H, Liberg O, Odden J, et al. Home range size and choice of management strategy for lynx in Scandinavia. Environ Manage. 2001;27:869–79. https://doi.org/10.1007/s002670010195.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naidenko SV. Body mass dynamic in Eurasian lynx (Lynx lynx) kittens during lactation. Acta Theriol (Warsz). 2006;51:91–8. https://doi.org/10.1007/BF03192660.

    Article 

    Google Scholar
     

  • Krofel M, Potočnik H, Kos I. Topographical and vegetational characteristics of lynx kill sites in Slovenian Dinaric Mountains. Natura Sloveniae. 2007;9:25–36.

    Article 

    Google Scholar
     

  • Ražen N, Brugnoli A, Castagna C, Groff C, Kaczensky P, Kljun K, et al. Long-distance dispersal connects Dinaric-Balkan and Alpine grey wolf (Canis lupus) populations. Eur J Wildl Res. 2016;62:137–42. https://doi.org/10.1007/s10344-015-0971-z.

    Article 

    Google Scholar
     

  • Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, et al. Status and ecological effects of the world’s largest carnivores. Science. 1979;2014(343):1241484. https://doi.org/10.1126/science.1241484.

    Article 
    CAS 

    Google Scholar
     

  • Chapron G, Kaczensky P, Linnell JDC, Von Arx M, Huber D, Andrén H, et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science. 1979;2014(346):1517–9. https://doi.org/10.1126/science.1257553.

    Article 
    CAS 

    Google Scholar
     

  • Zinger L, Bonin A, Alsos IG, Bálint M, Bik H, Boyer F, et al. DNA metabarcoding—need for robust experimental designs to draw sound ecological conclusions. Mol Ecol. 2019;28:1857–62. https://doi.org/10.1111/mec.15060.

    Article 
    PubMed 

    Google Scholar
     

  • Deagle BE, Eveson JP, Jarman SN. Quantification of damage in DNA recovered from highly degraded samples—a case study on DNA in faeces. Front Zool. 2006;3:1–10. https://doi.org/10.1186/1742-9994-3-11.

    Article 
    CAS 

    Google Scholar
     

  • Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev R. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol. 2012;21:2045–50. https://doi.org/10.1111/j.1365-294X.2012.05470.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akcali CK, Adán Pérez-Mendoza H, Salazar-Valenzuela D, Kikuchi DW, Guayasamin JM, Pfennig DW. Evaluating the utility of camera traps in field studies of predation. PeerJ. 2019;7: e6487. https://doi.org/10.7717/peerj.6487.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krofel M, Skrbinšek T, Kos I. Use of GPS location clusters analysis to study predation, feeding, and maternal behavior of the Eurasian lynx. Ecol Res. 2013;28:103–16. https://doi.org/10.1007/s11284-012-1005-x.

    Article 

    Google Scholar
     

  • Verkuil YI, Nicolaus M, Ubels R, Dietz MW, Samplonius JM, Galema A, et al. DNA metabarcoding quantifies the relative biomass of arthropod taxa in songbird diets: validation with camera-recorded diets. Ecol Evol. 2022;12(5): e8881. https://doi.org/10.1002/ece3.8881.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pawluczyk M, Weiss J, Links MG, Egaña Aranguren M, Wilkinson MD, Egea-Cortines M. Quantitative evaluation of bias in PCR amplification and next-generation sequencing derived from metabarcoding samples. Anal Bioanal Chem. 2015;407:1841–8. https://doi.org/10.1007/s00216-014-8435-y.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lamb PD, Hunter E, Pinnegar JK, Creer S, Davies RG, Taylor MI. How quantitative is metabarcoding: a meta-analytical approach. Mol Ecol. 2019;28(2):420–30. https://doi.org/10.1111/mec.14920.

    Article 
    PubMed 

    Google Scholar
     

  • Apollonio M, Belkin VV, Borkowski J, Borodin OI, Borowik T, Cagnacci F, et al. Challenges and science-based implications for modern management and conservation of European ungulate populations. Mamm Res. 2017;62:209–17. https://doi.org/10.1007/s13364-017-0321-5.

    Article 

    Google Scholar
     

  • Ouborg NJ, Pertoldi C, Loeschcke V, Bijlsma R, Hedrick PW. Conservation genetics in transition to conservation genomics. Trends Genet. 2010;26:177–87. https://doi.org/10.1016/j.tig.2010.01.001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pertoldi C, Randi E. The ongoing transition at an exponential speed from Conservation genetics to Conservation genomics. Genet Biodivers J. 2018;2:47–54. https://doi.org/10.46325/gabj.v2i2.124.

    Article 

    Google Scholar
     



  • Source link