Scientific Papers

Palm-based tocotrienol-rich fraction (TRF) supplementation modulates cardiac sod1 expression, fxr target gene expression, and tauro-conjugated bile acid levels in aleptinemic mice fed a high-fat diet | Genes & Nutrition


  • World Health Statistics 2023. Monitoring health for the SDGs, Sustainable Development Goals. Geneva: World Health Organization; 2023. Licence: CC BY‑NC‑SA 3.0 IGO.


    Google Scholar
     

  • Cromwell WC, Otvos JD, Keyes MJ, Pencina MJ, Sullivan L, Vasan RS, Wilson PW, D’Agostino RB. LDL particle number and risk of future cardiovascular disease in the Framingham offspring study – implications for LDL management. J Clin Lipidol. 2007;1(6):583–92. https://doi.org/10.1016/j.jacl.2007.10.001.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woods SC, Seeley RJ, Rushing PA, D’Alessio D, Tso P. A controlled high-fat diet induces an obese syndrome in rats. J Nutr. 2003;133(4):1081–7. https://doi.org/10.1093/jn/133.4.1081.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Panchal SK, Poudyal H, Iyer A, Nazer R, Alam A, Diwan V, Kauter K, Sernia C, Campbell F, Ward L, Gobe G, Fenning A, Brown L. High-carbohydrate high-fat diet–induced metabolic syndrome and cardiovascular remodeling in rats. J Cardiovasc Pharmacol. 2011;57(1):51–64. https://doi.org/10.1097/FJC.0b013e3181feb90a. Erratum in: J Cardiovasc Pharmacol. 2011 57(5):610. Corrected and republished in: J Cardiovasc Pharmacol. 2011;57(5):611-24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Calligaris SD, Lecanda M, Solis F, Ezquer M, Gutiérrez J, Brandan E, Leiva A, Sobrevia L, Conget P. Mice long-term high-fat diet feeding recapitulates human cardiovascular alterations: an animal model to study the early phases of diabetic cardiomyopathy. Plos One. 2013;8(4):e60931. https://doi.org/10.1371/journal.pone.0060931.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Savastano DM, Covasa M. Adaptation to a high-fat diet leads to hyperphagia and diminished sensitivity to cholecystokinin in rats. J Nutr. 2005;135(8):1953–9. https://doi.org/10.1093/jn/135.8.1953.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seol W, Choi HS, Moore DD. An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors. Science. 1996;272(5266):1336–9. https://doi.org/10.1126/science.272.5266.1336.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, Noonan DJ, Burka LT, McMorris T, Lamph WW, Evans RM, Weinberger C. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell. 1995;81(5):687–93. https://doi.org/10.1016/0092-8674(95)90530-8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B. Identification of a nuclear receptor for bile acids. Science. 1999;284(5418):1362–5. https://doi.org/10.1126/science.284.5418.1362.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huber RM, Murphy K, Miao B, Link JR, Cunningham MR, Rupar MJ, Gunyuzlu PL, Haws TF, Kassam A, Powell F, Hollis GF, Young PR, Mukherjee R, Burn TC. Generation of multiple farnesoid-X-receptor isoforms through the use of alternative promoters. Gene. 2002;290(1–2):35–43. https://doi.org/10.1016/s0378-1119(02)00557-7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang YD, Chen WD, Wang M, Yu D, Forman BM, Huang W. Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology. 2008;48(5):1632–43. https://doi.org/10.1002/hep.22519.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bishop-Bailey D, Walsh DT, Warner TD. Expression and activation of the farnesoid X receptor in the vasculature. Proc Natl Acad Sci U S A. 2004;101(10):3668–73. https://doi.org/10.1073/pnas.0400046101.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pu J, Yuan A, Shan P, Gao E, Wang X, Wang Y, Lau WB, Koch W, Ma XL, He B. Cardiomyocyte-expressed farnesoid-X-receptor is a novel apoptosis mediator and contributes to myocardial ischaemia/reperfusion injury. Eur Heart J. 2013;34(24):1834–45. https://doi.org/10.1093/eurheartj/ehs011. Epub 2012 Feb 3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mencarelli A, Cipriani S, Renga B, D’Amore C, Palladino G, Distrutti E, Baldelli F, Fiorucci S. FXR activation improves myocardial fatty acid metabolism in a rodent model of obesity-driven cardiotoxicity. Nutr Metab Cardiovasc Dis. 2013;23(2):94–101. https://doi.org/10.1016/j.numecd.2011.06.008.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghosh N, Das A, Khanna S. Vitamin E: tocopherols and tocotrienol and their role in health and disease. Essential and toxic trace elements and vitamins in human health. 2019; 283–293. https://doi.org/10.1016/B978-0-12-805378-2.00020-6. Accessed 9 Nov. 2023

  • Li F, Tan W, Kang Z, Wong CW. Tocotrienol enriched palm oil prevents atherosclerosis through modulating the activities of peroxisome proliferation-activated receptors. Atherosclerosis. 2010;211(1):278–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qureshi AA, Bradlow AB, Salser WA, Brace LD. Novel tocotrienols of rice bran modulate cardiovascular disease risk parameter of hypercholestrolemic humans. J Nutr Biochemistry. 1997;8(5):290–8.

    Article 
    CAS 

    Google Scholar
     

  • Black TM, Wang P, Maeda N, Coleman RA. Palm tocotrienols protect ApoE +/- mice from diet-induced atheroma formation. J Nutr. 2000;130(10):2420–6. https://doi.org/10.1093/jn/130.10.2420.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Razak AA, Omar E, Muid S, Nawawi H. Low dose palm tocotrienol-rich fraction reduces aortic tissue endothelial activation in severely atherosclerotic rabbits. Pertanika J Sci Technol. 2017;25(S8):63–72.


    Google Scholar
     

  • Shibata A, Kobayashi T, Asai A, Eitsuka T, Oikawa S, Miyazawa T, Nakagawa K. High purity tocotrienols attenuate atherosclerotic lesion formation in apoE-KO mice. J Nutr Biochem. 2017;48:44–50. https://doi.org/10.1016/j.jnutbio.2017.06.009.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ali SF, Woodman OL. Tocotrienol rich palm oil extract is more effective than pure tocotrienols at improving endothelium-dependent relaxation in the presence of oxidative stress. Oxid Med Cell Longev. 2015;2015:150829. https://doi.org/10.1155/2015/150829.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdul Khalid NA, Jubri Z. The protective effect of palm tocotrienol-rich fraction against H2O2– induced oxidative stress in neonatal rat cardiomyocytes. PeerJ Preprints. 2017;5:e3333v1. https://doi.org/10.7287/peerj.preprints.3333v1.

    Article 

    Google Scholar
     

  • AbdMuid S, Froemming GAF, Ali AM, Abdul Rahman T, Hamid Z, Nawawi H. Effects of palm oil derived tocotrienol rich fraction vitamin E isomers on biomarkers of early atherogenesis in stimulated human umbilical vein endothelial cells. Malaysia App Biol. 2022;51(4):145.

    Article 

    Google Scholar
     

  • Das S, Lekli I, Das M, Szabo G, Varadi J, Juhasz B, Bak I, Nesaretam K, Tosaki A, Powell SR, Das DK. Cardiprotection with palm oil tocotrienol: comparison of different isomers. Am J Physio Heart Circ Physiol. 2008;294(2):H970–8.

    Article 
    CAS 

    Google Scholar
     

  • Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, Gauthier C, Jacques PÉ, Li S, Xia J. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49(W1):W388–96. https://doi.org/10.1093/nar/gkab382.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feriani A, Bizzarri M, Tir M, Aldawood N, Alobaid H, Allagui MS, Dahmash W, Tlili N, Mnafgui K, Alwasel S, Harrath AH. High-fat diet-induced aggravation of cardiovascular impairment in permethrin-treated Wistar rats. Ecotoxicol Environ Saf. 2021;222:112461. https://doi.org/10.1016/j.ecoenv.2021.112461.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagarajan V, Gopalan V, Kaneko M, Angeli V, Gluckman P, Richards AM, Kuchel PW, Velan SS. Cardiac function and lipid distribution in rats fed a high-fat diet: in vivo magnetic resonance imaging and spectroscopy. Am J Physiol Heart Circ Physiol. 2013;304(11):H1495–504. https://doi.org/10.1152/ajpheart.00478.2012.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Avtanski D, Pavlov VA, Tracey KJ, Poretsky L. Characterization of inflammation and insulin resistance in high-fat diet-induced male C57BL/6J mouse model of obesity. Animal Model Exp Med. 2019;2(4):252–8. https://doi.org/10.1002/ame2.12084.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fraulob JC, Ogg-Diamantino R, Fernandes-Santos C, Aguila MB, Mandarim-de-Lacerda CA. A mouse model of metabolic syndrome: insulin resistance, fatty liver and non-alcoholic fatty pancreas disease (NAFPD) in C57BL/6 mice fed a high fat diet. J Clin Biochem Nutr. 2010;46(3):212–23. https://doi.org/10.3164/jcbn.09-83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang CY, Liao JK. A mouse model of diet-induced obesity and insulin resistance. Methods Mol Biol. 2012;821:421–33. https://doi.org/10.1007/978-1-61779-430-8_27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim KE, Jung Y, Min S, Nam M, Heo RW, Jeon BT, Song DH, Yi CO, Jeong EA, Kim H, Kim J, Jeong SY, Kwak W, do Ryu H, Horvath TL, Roh GS, Hwang GS. Caloric restriction of db/db mice reverts hepatic steatosis and body weight with divergent hepatic metabolism. Sci Rep. 2016;6:30111. https://doi.org/10.1038/srep30111.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mesri Alamdari N, Irandoost P, Roshanravan N, Vafa M, Asghari Jafarabadi M, Alipour S, Roshangar L, Alivand M, Farsi F, Shidfar F. Effects of royal jelly and tocotrienol rich fraction in obesity treatment of calorie-restricted obese rats: a focus on white fat browning properties and thermogenic capacity. Nutr Metab (Lond). 2020;17:42. https://doi.org/10.1186/s12986-020-00458-8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Irandoost P, Mesri Alamdari N, Saidpour A, Shidfar F, Roshanravan N, Asghari Jafarabadi M, Farsi F, Asghari Hanjani N, Vafa M. The effects of royal jelly and tocotrienol-rich fraction on impaired glycemic control and inflammation through irisin in obese rats. J Food Biochem. 2020;44(12):e13493. https://doi.org/10.1111/jfbc.13493.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allen L, Ramalingam L, Menikdiwela K, Scoggin S, Shen CL, Tomison MD, Kaur G, Dufour JM, Chung E, Kalupahana NS, Moustaid-Moussa N. Effects of delta-tocotrienol on obesity-related adipocyte hypertrophy, inflammation and hepatic steatosis in high-fat-fed mice. J Nutr Biochem. 2017;48:128–37. https://doi.org/10.1016/j.jnutbio.2017.07.003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Budin SB, Othman F, Louis SR, Bakar MA, Das S, Mohamed J. The effects of palm oil tocotrienol-rich fraction supplementation on biochemical parameters, oxidative stress and the vascular wall of streptozotocin-induced diabetic rats. Clinics (Sao Paulo). 2009;64(3):235–44. https://doi.org/10.1590/s1807-59322009000300015.

    Article 
    PubMed 

    Google Scholar
     

  • Matough FA, Budin SB, Hamid ZA, Abdul-Rahman M, Al-Wahaibi N, Mohammed J. Tocotrienol-rich fraction from palm oil prevents oxidative damage in diabetic rats. Sultan Qaboos Univ Med J. 2014;14(1):e95–103. https://doi.org/10.12816/0003342.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khor SC, Wan Ngah WZ, Mohd Yusof YA, Abdul Karim N, Makpol S. Tocotrienol-rich fraction ameliorates antioxidant defense mechanisms and improves replicative senescence-associated oxidative stress in human myoblasts. Oxid Med Cell Longev. 2017;2017:3868305. https://doi.org/10.1155/2017/3868305.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karnati S, Lüers G, Pfreimer S, Baumgart-Vogt E. Mammalian SOD2 is exclusively located in mitochondria and not present in peroxisomes. Histochem Cell Biol. 2013;140(2):105–17. https://doi.org/10.1007/s00418-013-1099-4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peh HY, Ho WE, Cheng C, Chan TK, Seow ANG, Lim AYH, Fong CW, Seng KY, Ong CN, Wong WSF. Vitamin E isoform gamma tocotrienol downregulates house dust mite-induced asthma. J Immunology. 2015;195(2):437–44.0.

    Article 
    CAS 

    Google Scholar
     

  • Durani LW, Jaafar F, Tan JK, Tajul Arifin K, Mohd Yusof YA, Wan Ngah WZ, Makpol S. Targeting genes in insulin-associated signalling pathway, DNA damage, cell proliferation and cell differentiation pathways by tocotrienol-rich fraction in preventing cellular senescence of human diploid fibroblasts. Clin Ter. 2015;166(6):e365–73. https://doi.org/10.7417/T.2015.1902.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Claudel T, Staels B, Kuipers F. The farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol. 2005;25(10):2020–30. https://doi.org/10.1161/01.ATV.0000178994.21828.a7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khurana S, Raufman JP, Pallone TL. Bile acids regulate cardiovascular function. Clin Transl Sci. 2011;4(3):210–8. https://doi.org/10.1111/j.1752-8062.2011.00272.x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi YC, Duan GZ, Mao W, Liu Q, Zhang YL, Li PF. Taurochenodeoxycholic acid mediates cAMP-PKA-CREB signaling pathway. Chin J Nat Med. 2020;18(12):898–906. https://doi.org/10.1016/S1875-5364(20)60033-4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Talebian R, Hashem O, Gruber R. Taurocholic acid lowers the inflammatory response of gingival fibroblasts, epithelial cells, and macrophages. J Oral Sci. 2020;62(3):335–9. https://doi.org/10.2334/josnusd.19-0342.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link