Scientific Papers

Preparation of bilayer tissue-engineered polyurethane/poly-L-lactic acid nerve conduits and their in vitro characterization for use in peripheral nerve regeneration | Journal of Biological Engineering


  • Arslantunali D, Dursun T, Yucel D, Hasirci N, Hasirci V. Peripheral nerve conduits: technology update. Medical Devices. Evidence and Research; 2014. p. 405–24.


    Google Scholar
     

  • Navarro X, Vivó M, Valero-Cabré A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol. 2007;82(4):163–201.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reyes O, Kuffler DP. Promoting neurological recovery following a traumatic peripheral nerve injury. P R Health Sci J. 2005;24(3):215–24.

    PubMed 

    Google Scholar
     

  • Jackson PC, Diamond J. Temporal and spatial constraints on the collateral sprouting of low-threshold mechanosensory nerves in the skin of rats. J Comp Neurol. 1984;226(3):336–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zennifer A, Thangadurai M, Sundaramurthi D, Sethuraman S. Additive manufacturing of peripheral nerve conduits–fabrication methods, design considerations and clinical challenges. SLAS technology. 2023;28(3):102–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaplan HM, Mishra P, Kohn J. The overwhelming use of rat models in nerve regeneration research may compromise designs of nerve guidance conduits for humans. J Mater Sci Mater Med. 2015;26:1–5.

    Article 
    CAS 

    Google Scholar
     

  • Moattari M, Moattari F, Kaka G, Kouchesfahani HM, Sadraie SH, Naghdi M. Comparison of neuroregeneration in central nervous system and peripheral nervous system. Otorhinolaryngol Neck Surg. 2018;3:1–3.


    Google Scholar
     

  • De Albornoz PM, Delgado PJ, Forriol F, Maffulli N. Non-surgical therapies for peripheral nerve injury. Br Med Bull. 2011;100(100):73–100.

    Article 

    Google Scholar
     

  • Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: a review on design, materials and fabrication methods. Acta Biomater. 2020;106:54–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang F, Murugan R, Ramakrishna S, Wang X, Ma Y-X, Wang S. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials. 2004;25(10):1891–900.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCreedy DA, Sakiyama-Elbert SE. Combination therapies in the CNS: engineering the environment. Neurosci Lett. 2012;519(2):115–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saremi J, Khanmohammadi M, Azami M, Ai J, Yousefi-Ahmadipour A, Ebrahimi-Barough S. Tissue-engineered nerve graft using silk-fibroin/polycaprolactone fibrous mats decorated with bioactive cerium oxide nanoparticles. J Biomed Mater Res A. 2021;109(9):1588–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salehi M, Naseri-Nosar M, Ebrahimi-Barough S, Nourani M, Khojasteh A, Hamidieh AA, et al. Sciatic nerve regeneration by transplantation of Schwann cells via erythropoietin controlled-releasing polylactic acid/multiwalled carbon nanotubes/gelatin nanofibrils neural guidance conduit. J Biomed Mater Res B Appl Biomater. 2018;106(4):1463–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlosshauer B, Dreesmann L, Schaller HE, Sinis N. Synthetic nerve guide implants in humans: a comprehensive survey. Neurosurgery. 2006;59(4):740–8.

    Article 
    PubMed 

    Google Scholar
     

  • Lundborg G, Dahlin LB, Danielsen N. Ulnar nerve repair by the silicone chamber technique. Scand J Plast Reconstr Surg Hand Surg. 1991;25(1):79–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Battiston B, Geuna S, Ferrero M, Tos P. Nerve repair by means of tubulization: literature review and personal clinical experience comparing biological and synthetic conduits for sensory nerve repair. Microsurgery. 2005;25(4):258–67.

    Article 
    PubMed 

    Google Scholar
     

  • Dreesmann L, Schlosshauer B. Implantation of synthetic nerve guides in humans. Biomaterialien. 2005;6:263–8.

    Article 

    Google Scholar
     

  • Meek MF, Coert JH. Clinical use of nerve conduits in peripheral-nerve repair: review of the literature. J Reconstr Microsurg. 2002;18(02):097–110.

    Article 
    CAS 

    Google Scholar
     

  • Cunha C, Panseri S, Antonini S. Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration. Nanomedicine. 2011;7(1):50–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abpeikar Z, Moradi L, Javdani M, Kargozar S, Soleimannejad M, Hasanzadeh E, et al. Characterization of macroporous Polycaprolactone/silk fibroin/gelatin/ascorbic acid composite scaffolds and in vivo results in a rabbit model for Meniscus cartilage repair. Cartilage. 2021;13(2_suppl):1583s–601s.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goulart CO, Lopes FRP, Monte ZO, Dantas SV Jr, Souto A, Oliveira JT, et al. Evaluation of biodegradable polymer conduits–poly (L-lactic acid)–for guiding sciatic nerve regeneration in mice. Methods. 2016;99:28–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santoro M, Shah SR, Walker JL, Mikos AG. Poly (lactic acid) nanofibrous scaffolds for tissue engineering. Adv Drug Deliv Rev. 2016;107:206–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farzamfar S, Esmailpour F, Rahmati M, Vaez A, Mirzaii M, Garmabi B, et al. Poly-lactic acid/gelatin nanofiber (PLA/GTNF) conduits containing platelet-rich plasma for peripheral nerve regeneration. International journal of health. Studies. 2017;3(2)

  • Carlberg B, Axell MZ, Nannmark U, Liu J, Kuhn HG. Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells. Biomed Mater. 2009;4(4):045004.

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Tijing LD, Park C-H, Choi WL, Ruelo MTG, Amarjargal A, Pant HR, et al. Characterization and mechanical performance comparison of multiwalled carbon nanotube/polyurethane composites fabricated by electrospinning and solution casting. Compos Part B. 2013;44(1):613–9.

    Article 
    CAS 

    Google Scholar
     

  • Ning C, Zhou Z, Tan G, et al. Electroactive polymers for tissue regeneration: developments and perspectives. Prog Polym Sci. 2018;81:144–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solazzo M, O’Brien FJ, Nicolosi V, et al. The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering. APL Bioeng. 2019;3:041501.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, G.;Wu,W.; Yang, H.; Zhang, P.;Wang, J.Y. Intact polyaniline coating as a conductive guidance is beneficial to repairing sciatic nerve injury. J Biomed Mater Res Part B Appl Biomater 2020;108, 128–142.

  • Nair S. Natar ering, biomaterials, 29 (2008) 1989–2006.Ajan S, Kim SH. Fabrication of electrically conducting polypyrrole-poly (ethylene oxide) compositenanofibers. Macromol Rapid Commun. 2005;26(20):1599–603.

    Article 
    CAS 

    Google Scholar
     

  • Xiang C, Zhang Y, Guo W, Liang X-J. Biomimetic carbon nanotubes for neurological disease therapeutics as inherent medication. Acta Pharm Sin B. 2020;10(2):239–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shokrgozar MA, Mottaghitalab F, Mottaghitalab V, Farokhi M. Fabrication of porous chitosan/poly (vinyl alcohol) reinforced single-walled carbon nanotube nanocomposites for neural tissue engineering. J Biomed Nanotechnol. 2011;7(2):276–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kojour MA, Ebrahimi-Barough S, Kouchesfehani HM, Jalali H, Ebrahim MH. Oleic acid promotes the expression of neural markers in differentiated human endometrial stem cells. J Chem Neuroanat. 2017;79:51–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mobarakeh ZT, Ai J, Yazdani F, Sorkhabadi SMR, Ghanbari Z, Javidan AN, et al. Human endometrial stem cells as a new source for programming to neural cells. Cell biology international reports. 2012;19(1):7–14.

    Article 

    Google Scholar
     

  • Hasanzadeh E, Mahmoodi N, Basiri A, Esmaeili Ranjbar F, Hassannejad Z, Ebrahimi-Barough S, et al. Proanthocyanidin as a crosslinking agent for fibrin, collagen hydrogels and their composites with decellularized Wharton’s-jelly-extract for tissue engineering applications. J Bioact Compat Polym. 2020;35(6):554–71.

    Article 
    CAS 

    Google Scholar
     

  • Mahmoodi N, Ai J, Hassannejad Z, Ebrahimi-Barough S, Hasanzadeh E, Nekounam H, et al. Improving motor neuron-like cell differentiation of hEnSCs by the combination of epothilone B loaded PCL microspheres in optimized 3D collagen hydrogel. Sci Rep. 2021;11(1):21722.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hasanzadeh E, Ebrahimi-Barough S, Mahmoodi N, Mellati A, Nekounam H, Basiri A, et al. Defining the role of 17β-estradiol in human endometrial stem cells differentiation into neuron-like cells. Cell Biol Int. 2021;45(1):140–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hasanzadeh E, Amoabediny G, Haghighipour N, Gholami N, Mohammadnejad J, Shojaei S, et al. The stability evaluation of mesenchymal stem cells differentiation toward endothelial cells by chemical and mechanical stimulation. In Vitro Cellular & Developmental Biology-Animal. 2017;53:818–26.

    Article 
    CAS 

    Google Scholar
     

  • Vallone VF, Romaniuk MA, Choi H, Labovsky V, Otaegui J, Chasseing NA. Mesenchymal stem cells and their use in therapy: what has been achieved?. Differentiation. 2013;85(1-2):1-0.

  • Zhu Y, Wang A, Patel S, Kurpinski K, Diao E, Bao X, et al. Engineering bi-layer nanofibrous conduits for peripheral nerve regeneration. Tissue Engineering Part C: Methods. 2011;17(7):705–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Cheng Y, Wang H, Yang D, Liu C, Dou W, et al. Regulation of TiO2@ PVDF piezoelectric nanofiber membranes on osteogenic differentiation of mesenchymal stem cells. Nano Energy. 2023;115:108742.

    Article 
    CAS 

    Google Scholar
     

  • Hasanzadeh E, Ebrahimi-Barough S, Mirzaei E, Azami M, Tavangar SM, Mahmoodi N, et al. Preparation of fibrin gel scaffolds containing MWCNT/PU nanofibers for neural tissue engineering. J Biomed Mater Res A. 2019;107(4):802–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bagheri S, Bagher Z, Hassanzadeh S, Simorgh S, Kamrava SK, Nooshabadi VT, et al. Control of cellular adhesiveness in hyaluronic acid-based hydrogel through varying degrees of phenol moiety cross-linking. J Biomed Mater Res A. 2021;109(5):649–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Astaneh ME, Goodarzi A, Khanmohammadi M, Shokati A, Mohandesnezhad S, Ataollahi MR, et al. Chitosan/gelatin hydrogel and endometrial stem cells with subsequent atorvastatin injection impact in regenerating spinal cord tissue. Journal of Drug Delivery Science and Technology. 2020;58:101831.

    Article 
    CAS 

    Google Scholar
     

  • Zahiri M, Khanmohammadi M, Goodarzi A, Ababzadeh S, Farahani MS, Mohandesnezhad S, et al. Encapsulation of curcumin loaded chitosan nanoparticle within poly (ε-caprolactone) and gelatin fiber mat for wound healing and layered dermal reconstitution. Int J Biol Macromol. 2020;153:1241–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fathi A, Khanmohammadi M, Goodarzi A, Foroutani L, Mobarakeh ZT, Saremi J, et al. Fabrication of chitosan-polyvinyl alcohol and silk electrospun fiber seeded with differentiated keratinocyte for skin tissue regeneration in animal wound model. J Biol Eng. 2020;14(1):1–14.

    Article 

    Google Scholar
     

  • Yu W, Zhao W, Zhu C, Zhang X, Ye D, Zhang W, et al. Sciatic nerve regeneration in rats by a promising electrospun collagen/poly (ε-caprolactone) nerve conduit with tailored degradation rate. BMC Neurosci. 2011;12(1):1–14.

    Article 

    Google Scholar
     

  • Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M-H, Ramakrishna S. Electrospun poly (ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29(34):4532–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cirillo V, Clements BA, Guarino V, Bushman J, Kohn J, Ambrosio L. A comparison of the performance of mono-and bi-component electrospun conduits in a rat sciatic model. Biomaterials. 2014;35(32):8970–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirzaei E, Ai J, Ebrahimi-Barough S, Verdi J, Ghanbari H, Faridi-Majidi R. The differentiation of human endometrial stem cells into neuron-like cells on electrospun PAN-derived carbon nanofibers with random and aligned topographies. Mol Neurobiol. 2016;53(7):4798–808.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Binan L, Tendey C, De Crescenzo G, El Ayoubi R, Ajji A, Jolicoeur M. Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lactic acid/gelatin scaffold. Biomaterials. 2014;35(2):664–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Ye R, Wei Y, Wang H, Xu X, Zhang F, et al. The effects of electrospun TSF nanofiber diameter and alignment on neuronal differentiation of human embryonic stem cells. J Biomed Mater Res A. 2012;100(3):632–45.

    Article 
    PubMed 

    Google Scholar
     

  • Duan S, Yang X, Mei F, Tang Y, Li X, Shi Y, et al. Enhanced osteogenic differentiation of mesenchymal stem cells on poly(L-lactide) nanofibrous scaffolds containing carbon nanomaterials. J Biomed Mater Res A. 2015;103(4):1424–35.

    Article 
    PubMed 

    Google Scholar
     

  • Liao G-Y, Zhou X-P, Chen L, Zeng X-Y, Xie X-L, Mai Y-W. Electrospun aligned PLLA/PCL/functionalised multiwalled carbon nanotube composite fibrous membranes and their bio/mechanical properties. Compos Sci Technol. 2012;72(2):248–55.

    Article 
    CAS 

    Google Scholar
     

  • Molinari F, Medrano AV, Bacigalupe A, Escobar MM, Monsalve LN. Different dispersion states of MWCNT in aligned conductive electrospun PCL/MWCNT composites. Fullerenes, Nanotubes and Carbon Nanostructures. 2018;26(10):667–74.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Su Z, Li J, Li Q, Ni T, Wei G. Chain conformation, crystallization behavior, electrical and mechanical properties of electrospun polymer-carbon nanotube hybrid nanofibers with different orientations. Carbon. 2012;50(15):5605–17.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Kumar S. Polymer/carbon nanotube nano composite fibers–a review. ACS Appl Mater Interfaces. 2014;6(9):6069–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeganeh H, Orang F, Solouk A, Rafienia M. Synthesis, characterization and preliminary investigation of blood compatibility of novel epoxy-modified polyurethane networks. J Bioact Compat Polym. 2008;23(3):276–300.

    Article 
    CAS 

    Google Scholar
     

  • Díaz E, Martín J, León J. Carbon nanotube reinforced poly (l-lactide) scaffolds: in vitro degradation, conductivity, mechanical and thermal properties. Composite Interfaces. 2021;28(5):511–25.

    Article 
    ADS 

    Google Scholar
     

  • Ji H, Song X, He C, Tang C, Xiong L, Zhao W, et al. Root-soil structure inspired hydrogel microspheres with high dimensional stability and anion-exchange capacity. J Colloid Interface Sci. 2018;532:680–8.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Khyati D. Characterization of rheological properties and degradation of Genipin Crosslinked fibrin hydrogel for annulus repair. Thesis. The City College of New York; 2012.


    Google Scholar
     

  • Krarup C, Archibald SJ, Madison RD. Factors that influence peripheral nerve regeneration: an electrophysiological study of the monkey median nerve. Ann Neurol. 2002;51:69–81.

    Article 
    PubMed 

    Google Scholar
     

  • Harley BA, Spilker MH, Wu JW, et al. Optimal degradation rate for collagen chambers used for regeneration of peripheral nerves over long gaps. Cells Tissues Organs. 2004;176:153–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng Z, Zheng W, Li L, Zheng Y. Fabrication and characterization of three-dimensional nanofiber membrance of PCL–MWCNTs by electrospinning. Mater Sci Eng C. 2010;30(7):1014–21.

    Article 
    CAS 

    Google Scholar
     

  • Yang C, Chen S, Wang J, Zhu T, Xu G, Chen Z, et al. A facile electrospinning method to fabricate polylactide/graphene/MWCNTs nanofiber membrane for tissues scaffold. Appl Surf Sci. 2016;362:163–8.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zadeh ZE, Solouk A, Shafieian M, Nazarpak MH. Electrospun polyurethane/carbon nanotube composites with different amounts of carbon nanotubes and almost the same fiber diameter for biomedical applications. Mater Sci Eng C. 2021;118:111403.

    Article 

    Google Scholar
     

  • Ho M-H, Kuo P-Y, Hsieh H-J, Hsien T-Y, Hou L-T, Lai J-Y, et al. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials. 2004;25(1):129–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohamadi F, Ebrahimi-Barough S, Reza Nourani M, Ali Derakhshan M, Goodarzi V, Sadegh Nazockdast M, et al. Electrospun nerve guide scaffold of poly (ε-caprolactone)/collagen/nanobioglass: an in vitro study in peripheral nerve tissue engineering. J Biomed Mater Res A. 2017;105(7):1960–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ebrahimi-Barough S, Hoveizi E, Yazdankhah M, Ai J, Khakbiz M, Faghihi F, et al. Inhibitor of PI3K/Akt signaling pathway small molecule promotes motor neuron differentiation of human endometrial stem cells cultured on electrospun biocomposite polycaprolactone/collagen scaffolds. Mol Neurobiol. 2017;54:2547–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shokraei N, Asadpour S, Shokraei S, Nasrollahzadeh Sabet M, Faridi-Majidi R, Ghanbari H. Development of electrically conductive hybrid nanofibers based on CNT-polyurethane nanocomposite for cardiac tissue engineering. Microsc Res Tech. 2019;82(8):1316–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prabhakaran MP, Venugopal JR, Ramakrishna S. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials. 2009;30(28):4996–5003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sirivisoot S, Harrison BS. Skeletal myotube formation enhanced by electrospun polyurethane carbon nanotube scaffolds. Int J Nanomedicine. 2011;2483-97



  • Source link