Scientific Papers

The therapeutic potential of probucol and probucol analogues in neurodegenerative diseases | Translational Neurodegeneration

Description of Image

  • Brodtmann A, Werden E, Khlif MS, Bird LJ, Egorova N, Veldsman M, et al. Neurodegeneration over 3 years following ischaemic stroke: findings from the cognition and neocortical volume after stroke study. Front Neurol. 2021;12:754204.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jha SK, Jha NK, Kumar D, Ambasta RK, Kumar P. Linking mitochondrial dysfunction, metabolic syndrome and stress signaling in neurodegeneration. Biochim Biophys Acta (BBA) Mol Basis Dis. 2017;1863:1132–46.

    Article 
    CAS 

    Google Scholar
     

  • Abramov AY, Bachurin SO. Neurodegenerative disorders: searching for targets and new ways of diseases treatment. Med Res Rev. 2021;41:2603–5. 

    Article 
    PubMed 

    Google Scholar
     

  • de Oliveira LG, Angelo YS, Iglesias AH, Peron JPS. Unraveling the link between mitochondrial dynamics and neuroinflammation. Front Immunol. 2021;12:624919.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malko P, Jiang LH. TRPM2 channel-mediated cell death: an important mechanism linking oxidative stress-inducing pathological factors to associated pathological conditions. Redox Biol. 2020;37:101755.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015;22:377–88.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sankowski R, Mader S, Valdés-Ferrer SI. Systemic inflammation and the brain: Novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front Cell Neurosci. 2015;9:128434.

    Article 

    Google Scholar
     

  • Godbout JP, Chen J, Abraham J, Richwine AF, Berg BM, Kelley KW, et al. Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J. 2005;19:1329–31.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018;15:490–503.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yamashita S, Matsuzawa Y. Where are we with probucol: a new life for an old drug? Atherosclerosis. 2009;207:16–23.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Klein L. QT-interval prolongation produced by probucol. Arch Intern Med. 1981;141:1102–3.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Adlouni A, ElMessal M, Saïle R, Parra HJ, Fruchart JC, Ghalim N. Probucol promotes reverse cholesterol transport in heterozygous familial hypercholesterolemia. Effects on apolipoprotein AI-containing lipoprotein particles. Atherosclerosis. 2000;152:433–40.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ishigami M, Yamashita S, Sakai N, Hirano KI, Arai T, Maruyama T, et al. High-density lipoproteins from probucol-treated patients have increased capacity to promote cholesterol efflux from mouse peritoneal macrophages loaded with acetylated low-density lipoproteins. Eur J Clin Invest. 1997;27:285–92.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hirano KI, Ikegami C, Tsujii KI, Zhang Z, Matsuura F, Nakagawa-Toyama Y, et al. Probucol enhances the expression of human hepatic scavenger receptor class B type I, possibly through a species-specific mechanism. Arterioscler Thromb Vasc Biol. 2005;25:2422–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rinninger F, Wang N, Ramakrishnan R, Jiang XC, Tall AR. Probucol enhances selective uptake of HDL-associated cholesteryl esters in vitro by a scavenger receptor B-I-dependent mechanism. Arterioscler Thromb Vasc Biol. 1999;19:1325–32.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hirata KI. New evidence of probucol on cardiovascular events. J Atheroscler Thromb. 2021;28:97.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC. The blood-brain barrier: an engineering perspective. Front Neuroeng. 2013;0:7.

    CAS 

    Google Scholar
     

  • Daneman R, Prat A. The Blood–brain barrier. http://cshperspectives.cshlp.org/. Accessed 19 Jan 2022

  • Zhong Z, Deane R, Ali Z, Parisi M, Shapovalov Y, O’Banion MK, et al. ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat Neurosci. 2008;11:420–2.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Drouin-Ouellet J, Sawiak SJ, Cisbani G, Lagacé M, Kuan WL, Saint-Pierre M, et al. Cerebrovascular and blood–brain barrier impairments in Huntington’s disease: potential implications for its pathophysiology. Ann Neurol. 2015;78:160–77.

    Article 
    PubMed 

    Google Scholar
     

  • Yamazaki Y, Shinohara M, Shinohara M, Yamazaki A, Murray ME, Liesinger AM, et al. Selective loss of cortical endothelial tight junction proteins during Alzheimer’s disease progression. Brain. 2019;142:1077–92.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li K, Li J, Zheng J, Qin S. Reactive astrocytes in neurodegenerative diseases. Aging Dis. 2019;10:664.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ding R, Hase Y, Ameen-Ali KE, Ndung’u M, Stevenson W, Barsby J, et al. Loss of capillary pericytes and the blood-brain barrier in white matter in poststroke and vascular dementias and Alzheimer’s disease. Brain Pathol. 2020;30:1087–101.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Halliday MR, Rege SV, Ma Q, Zhao Z, Miller CA, Winkler EA, et al. Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease. J Cereb Blood Flow Metab. 2016;36:216–27.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hsiao HY, Chen YC, Huang CH, Chen CC, Hsu YH, Chen HM, et al. Aberrant astrocytes impair vascular reactivity in Huntington disease. Ann Neurol. 2015;78:178–92.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gray MT, Woulfe JM. Striatal blood-brain barrier permeability in Parkinson’s disease. J Cereb Blood Flow Metab. 2015;35:747–50.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Garbuzova-Davis S, Haller E, Saporta S, Kolomey I, Nicosia SV, Sanberg PR. Ultrastructure of blood–brain barrier and blood–spinal cord barrier in SOD1 mice modeling ALS. Brain Res. 2007;1157:126–37.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Winkler EA, Nishida Y, Sagare AP, Rege SV, Bell RD, Perlmutter D, et al. GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci. 2015;18:521–30.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Vogelsang P, Giil LM, Lund A, Vedeler CA, Parkar AP, Nordrehaug JE, et al. Reduced glucose transporter-1 in brain derived circulating endothelial cells in mild Alzheimer’s disease patients. Brain Res. 2018;1678:304–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Donahue JE, Flaherty SL, Johanson CE, Duncan JA, Silverberg GD, Miller MC, et al. RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease. Acta Neuropathol. 2006;112:405–15.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • du Yan S, Chen X, Fu J, Chen M, Zhu H, Roher A, et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature. 1996;382:685–91.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chiu C, Miller MC, Monahan R, Osgood DP, Stopa EG, Silverberg GD. P-glycoprotein expression and amyloid accumulation in human aging and Alzheimer’s disease: preliminary observations. Neurobiol Aging. 2015;36:2475–82.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nakagawa S, Aruga J. Sphingosine 1-phosphate signaling is involved in impaired blood–brain barrier function in ischemia-reperfusion injury. Mol Neurobiol. 2019;57:1594–606.

    Article 
    PubMed 

    Google Scholar
     

  • Takase B, Nagata M, Hattori H, Tanaka Y, Ishihara M. Combined therapeutic effect of probucol and cilostazol on endothelial function in patients with silent cerebral lacunar infarcts and hypercholesterolemia: a preliminary study. Med Principles Pract. 2014;23:59–65.

    Article 

    Google Scholar
     

  • Ma J, Zhao S, Gao G, Chang H, Ma P, Jin B. Probucol protects against asymmetric dimethylarginine-induced apoptosis in the cultured human brain microvascular endothelial cells. J Mol Neurosci. 2015;57:546–53.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fischer S, Wiesnet M, Renz D, Schaper W. H2O2 induces paracellular permeability of porcine brain-derived microvascular endothelial cells by activation of the p44/42 MAP kinase pathway. Eur J Cell Biol. 2005;84:687–97.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lochhead JJ, McCaffrey G, Quigley CE, Finch J, Demarco KM, Nametz N, et al. Oxidative stress increases blood–brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation. J Cereb Blood Flow Metab. 2010;30:1625–36.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, et al. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science. 1979;2002(297):1186–90.


    Google Scholar
     

  • Song K, Li Y, Zhang H, An N, Wei Y, Wang L, et al. Oxidative stress-mediated blood–brain barrier (BBB) disruption in neurological diseases. Oxid Med Cell Longev. 2020;2020.

  • Chen W, Ju XZ, Lu Y, Ding XW, Miao CH, Chen JW. Propofol improved hypoxia-impaired integrity of blood-brain barrier via modulating the expression and phosphorylation of zonula occludens-1. CNS Neurosci Ther. 2019;25:704–13.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tan S, Shan Y, Lin Y, Liao S, Zhang B, Zeng Q, et al. Neutralization of interleukin-9 ameliorates experimental stroke by repairing the blood-brain barrier via down-regulation of astrocyte-derived vascular endothelial growth factor-A. FASEB J. 2019;33:4376–87.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Labus J, Häckel S, Lucka L, Danker K. Interleukin-1β induces an inflammatory response and the breakdown of the endothelial cell layer in an improved human THBMEC-based in vitro blood-brain barrier model. J Neurosci Methods. 2014;228:35–45.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Larochelle C, Alvarez JI, Prat A. How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett. 2011;585:3770–80.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Labus J, Wöltje K, Stolte KN, Häckel S, Kim KS, Hildmann A, et al. IL-1β promotes transendothelial migration of PBMCs by upregulation of the FN/α 5 β 1 signalling pathway in immortalised human brain microvascular endothelial cells. Exp Cell Res. 2018;373:99–111.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Menard C, Pfau ML, Hodes GE, Kana V, Wang VX, Bouchard S, et al. Social stress induces neurovascular pathology promoting depression. Nat Neurosci. 2017;20:1752–60.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Takechi R, Galloway S, Pallebage-Gamarallage MM, Lam V, Dhaliwal SS, Mamo JC. Probucol prevents blood–brain barrier dysfunction in wild-type mice induced by saturated fat or cholesterol feeding. Clin Exp Pharmacol Physiol. 2013;40:45–52.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Takechi R, Pallebage-Gamarallage MM, Lam V, Giles C, Mamo JC. Long-term probucol therapy continues to suppress markers of neurovascular inflammation in a dietary induced model of cerebral capillary dysfunction. Lipids Health Dis. 2014;13:1–10.

    Article 

    Google Scholar
     

  • Pimplikar SW. Neuroinflammation in Alzheimer’s disease: from pathogenesis to a therapeutic target. J Clin Immunol. 2014;34(Suppl):1.


    Google Scholar
     

  • Hirsch EC, Vyas S, Hunot S. Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18:S210–2.

    Article 
    PubMed 

    Google Scholar
     

  • Möller T. Neuroinflammation in Huntington’s disease. J Neural Transm. 2010;117:1001–8.

    Article 
    PubMed 

    Google Scholar
     

  • Mamo JCL, Lam V, Brook E, Mooranian A, Al-Salami H, Fimognari N, et al. Probucol prevents blood–brain barrier dysfunction and cognitive decline in mice maintained on pro-diabetic diet. Diab Vasc Dis Res. 2019;16:87–97.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Champagne D, Pearson D, Dea D, Rochford J, Poirier J. The cholesterol-lowering drug Probucol increases apolipoprotein e production in the hippocampus of aged rats: implications for Alzheimer’s disease. Neuroscience. 2003;121:99–110.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Talwar P, Sinha J, Grover S, Agarwal R, Kushwaha S, Srivastava MVP, et al. Meta-analysis of apolipoprotein E levels in the cerebrospinal fluid of patients with Alzheimer’s disease. J Neurol Sci. 2016;360:179–87.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu BJ, di Girolamo N, Beck K, Hanratty CG, Choy K, Hou JY, et al. Probucol [4,4′-[(1-methylethylidene)bis(thio)]bis-[2,6-bis(1,1-dimethylethyl)phenol]] inhibits compensatory remodeling and promotes lumen loss associated with atherosclerosis in apolipoprotein E-deficient mice. J Pharmacol Exp Ther. 2007;321:477–84.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jung YS, Park JH, Kim H, Kim SY, Hwang JY, Hong KW, et al. Probucol inhibits LPS-induced microglia activation and ameliorates brain ischemic injury in normal and hyperlipidemic mice. Acta Pharmacol Sin. 2016;37:1031–44.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bolisetty S, Jaimes EA. Mitochondria and reactive oxygen species: physiology and pathophysiology. Int J Mol Sci. 2013;14:6306.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bisby RH, Johnson SA, Parker AW. Quenching of reactive oxidative species by probucol and comparison with other antioxidants. Free Radic Biol Med. 1996;20:411–20.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huang J-L, Yu C, Su M, Yang S-M, Zhang F, Chen Y-Y, et al. Probucol, a “non-statin” cholesterol-lowering drug, ameliorates D-galactose induced cognitive deficits by alleviating oxidative stress via Keap1/Nrf2 signaling pathway in mice. Aging (Albany NY). 2019;11:8542.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhou Z, Liu C, Chen S, Zhao H, Zhou K, Wang W, et al. Activation of the Nrf2/ARE signaling pathway by probucol contributes to inhibiting inflammation and neuronal apoptosis after spinal cord injury. Oncotarget. 2017;8:52078.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Z, Chen S, Zhao H, Wang C, Gao K, Guo Y, et al. Probucol inhibits neural cell apoptosis via inhibition of mTOR signaling pathway after spinal cord injury. Neuroscience. 2016;329:193–200.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Santos DB, Colle D, Moreira ELG, Santos AA, Hort MA, Santos K, et al. Probucol protects neuronal cells against peroxide-induced damage and directly activates glutathione peroxidase-1. Mol Neurobiol. 2020;57:3245–57.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xie Y, Song A, Zhu Y, Jiang A, Peng W, Zhang C, et al. Effects and mechanisms of probucol on aging-related hippocampus-dependent cognitive impairment. Biomed Pharmacother. 2021;144:112266.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • James AP, Pal S, Gennat HC, Vine DF, Mamo JCL. The incorporation and metabolism of amyloid-beta into chylomicron-like lipid emulsions. J Alzheimers Dis. 2003;5:179–88.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Takechi R, Pallebage-Gamarallage MM, Lam V, Giles C, Mamo JC. Aging-related changes in blood-brain barrier integrity and the effect of dietary fat. Neurodegener Dis. 2013;12:125–35.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Galloway S, Takechi R, Nesbit M, Pallebage-Gamarallage MM, Lam V, Mamo JCL. The differential effects of fatty acids on enterocytic abundance of amyloid-beta. Lipids Health Dis. 2019;18:1–6.

    Article 

    Google Scholar
     

  • Mamo JCL, Jian L, James AP, Flicker L, Esselmann H, Wiltfang J. Plasma lipoprotein β-amyloid in subjects with Alzheimer’s disease or mild cognitive impairment. Ann Clin Biochem. 2008;45:395–403.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Takechi R, Galloway S, Pallebage-Gamarallage M, Wellington C, Johnsen R, Mamo JC. Three-dimensional colocalization analysis of plasma-derived apolipoprotein B with amyloid plaques in APP/PS1 transgenic mice. Histochem Cell Biol. 2009;131:661–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Namba Y, Tsuchiya H, Ikeda K. Apolipoprotein B immunoreactivity in senile plaque and vascular amyloids and neurofibrillary tangles in the brains of patients with Alzheimer’s disease. Neurosci Lett. 1992;134:264–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sparks DL, Scheff SW, Hunsaker JC, Liu H, Landers T, Gross DR. Induction of Alzheimer-like β-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp Neurol. 1994;126:88–94.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Takechi R, Galloway S, Pallebage-Gamarallage MMS, Lam V, Mamo JCL. Dietary fats, cerebrovasculature integrity and Alzheimer’s disease risk. Prog Lipid Res. 2010;49:159–70.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Takechi R, Galloway S, Pallebage-Gamarallage MM, Lam V, Dhaliwal SS, Mamo JC. Probucol prevents blood–brain barrier dysfunction in wild-type mice induced by saturated fat or cholesterol feeding. Clin Exp Pharmacol Physiol. 2013;40:45–52.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pallebage-Gamarallage MM, Galloway S, Takechi R, Dhaliwal S, Mamo JCL. Probucol suppresses enterocytic accumulation of amyloid-β induced by saturated fat and cholesterol feeding. Lipids. 2012;47:27–34.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mamo JCL, Elsegood CL, Umeda Y, Hirano T, Redgrave TG. Effect of probucol on plasma clearance and organ uptake of chylomicrons and VLDLs in normal and diabetic rats. Arterioscler Thromb. 1993;13:231–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Santos DB, Peres KC, Ribeiro RP, Colle D, dos Santos AA, Moreira ELG, et al. Probucol, a lipid-lowering drug, prevents cognitive and hippocampal synaptic impairments induced by amyloid β peptide in mice. Exp Neurol. 2012;233:767–75.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB, et al. apoE isoform–specific disruption of amyloid β peptide clearance from mouse brain. J Clin Invest. 2008;118:4002–13.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kanekiyo T, Bu G. The low-density lipoprotein receptor-related protein 1 and amyloid-β clearance in Alzheimer’s disease. Front Aging Neurosci. 2014;6:93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanekiyo T, Xu H, Bu G. ApoE and Aβ in Alzheimer’s disease: accidental encounters or partners? Neuron. 2014;81:740–54.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Drouet B, Fifre A, Pinçon-Raymond M, Vandekerckhove J, Rosseneu M, Guéant JL, et al. ApoE protects cortical neurones against neurotoxicity induced by the non-fibrillar C-terminal domain of the amyloid-β peptide. J Neurochem. 2001;76:117–27.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Naiki H, Hasegawa K, Yamaguchi I, Nakamura H, Gejyo F, Nakakuki K. Apolipoprotein E and antioxidants have different mechanisms of inhibiting Alzheimer’s beta-amyloid fibril formation in vitro. Biochemistry. 1998;37:17882–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Santos DB, Colle D, Moreira ELG, Peres KC, Ribeiro RP, dos Santos AA, et al. Probucol mitigates streptozotocin-induced cognitive and biochemical changes in mice. Neuroscience. 2015;284:590–600.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Poirier J, Miron J, Picard C, Gormley P, Théroux L, Breitner J, et al. Apolipoprotein E and lipid homeostasis in the etiology and treatment of sporadic Alzheimer’s disease. Neurobiol Aging. 2014;35:S3-10.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lam V, Clarnette R, Francis R, Bynevelt M, Watts G, Flicker L, et al. Efficacy of probucol on cognitive function in Alzheimer’s disease: study protocol for a double-blind, placebo-controlled, randomised phase II trial (PIA study). BMJ Open. 2022;12:e058826.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ribeiro RP, Moreira ELG, Santos DB, Colle D, dos Santos AA, Peres KC, et al. Probucol affords neuroprotection in a 6-OHDA mouse model of Parkinson’s disease. Neurochem Res. 2013;38:660–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu J, Liu W, Li R, Yang H. Mitophagy in Parkinson’s disease: from pathogenesis to treatment. Cells. 2019;8(7):712.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Moskal N, Visanji NP, Gorbenko O, Narasimhan V, Tyrrell H, Nash J, et al. An AI-guided screen identifies probucol as an enhancer of mitophagy through modulation of lipid droplets. PLoS Biol. 2023;21:e3001977. https://doi.org/10.1371/journal.pbio.3001977.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ray A, Martinez BA, Berkowitz LA, Caldwell GA, Caldwell KA. Mitochondrial dysfunction, oxidative stress, and neurodegeneration elicited by a bacterial metabolite in a C. elegans Parkinson’s model. Cell Death Dis. 2014;5:e984–e984.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Vinther-Jensen T, Larsen IU, Hjermind LE, Budtz-Jørgensen E, Nielsen TT, Nørremølle A, et al. A clinical classification acknowledging neuropsychiatric and cognitive impairment in Huntington’s disease. Orphanet J Rare Dis. 2014;9:1–9.

    Article 

    Google Scholar
     

  • Colle D, Hartwig JM, Antunes Soares FA, Farina M. Probucol modulates oxidative stress and excitotoxicity in Huntington’s disease models in vitro. Brain Res Bull. 2012;87:397–405.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Colle D, Santos DB, Moreira ELG, Hartwig JM, dos Santos AA, Zimmermann LT, et al. Probucol increases striatal glutathione peroxidase activity and protects against 3-nitropropionic acid-induced pro-oxidative damage in rats. PLoS ONE. 2013;8:67658.

    Article 

    Google Scholar
     

  • De Paula Nascimento-Castro C, Wink AC, Da Fônseca VS, Bianco CD, Winkelmann-Duarte EC, Farina M, et al. Antidepressant Effects of probucol on early-symptomatic YAC128 transgenic mice for Huntington’s disease. Neural Plast. 2018;2018.

  • Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119.

    Article 
    PubMed 

    Google Scholar
     

  • Cukierman T, Gerstein HC, Williamson JD. Cognitive decline and dementia in diabetes: systematic overview of prospective observational studies. Diabetologia. 2005;48:2460–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol. 2006;5:64–74.

    Article 
    PubMed 

    Google Scholar
     

  • Xu W, Caracciolo B, Wang HX, Winblad B, Bäckman L, Qiu C, et al. Accelerated progression from mild cognitive impairment to dementia in people with diabetes. Diabetes. 2010;59:2928–35.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Moran C, Phan TG, Chen J, Blizzard L, Beare R, Venn A, et al. Brain atrophy in type 2 diabetes regional distribution and influence on cognition. Diabetes Care. 2013;36(12):4036–42.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Biessels GJ, Strachan MWJ, Visseren FLJ, Kappelle LJ, Whitmer RA. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes Endocrinol. 2014;2:246–55.

    Article 
    PubMed 

    Google Scholar
     

  • Roberts RO, Knopman DS, Geda YE, Cha RH, Pankratz VS, Baertlein L, et al. Association of diabetes with amnestic and nonamnestic mild cognitive impairment. Alzheimers Dement. 2014;10(1):18-26.

    Article 
    PubMed 

    Google Scholar
     

  • Ceretta LB, Réus GZ, Abelaira HM, Ribeiro KF, Zappellini G, Felisbino FF, et al. Increased oxidative stress and imbalance in antioxidant enzymes in the brains of alloxan-induced diabetic rats. Exp Diabetes Res. 2012;2012.

  • Aliciguzel Y, Ozen I, Aslan M, Karayalcin U. Activities of xanthine oxidoreductase and antioxidant enzymes in different tissues of diabetic rats. J Lab Clin Med. 2003;142:172–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • West IC. Radicals and oxidative stress in diabetes. Diabetic Med. 2000;17:171–80.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Muriach M, Flores-Bellver M, Romero FJ, Barcia JM. Diabetes and the brain: Oxidative stress, inflammation, and autophagy. Oxid Med Cell Longev. 2014;2014.

  • Gorogawa SI, Kajimoto Y, Umayahara Y, Kaneto H, Watada H, Kuroda A, et al. Probucol preserves pancreatic β-cell function through reduction of oxidative stress in type 2 diabetes. Diabetes Res Clin Pract. 2002;57:1–10.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Takatori A, Ohta E, Inenaga T, Horiuchi K, Ishii Y, Itagaki SI, et al. Protective effects of probucol treatment on pancreatic β-cell function of SZ-induced diabetic APA hamsters. Exp Anim. 2003;52:317–27.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Duan Bin S, Liu GL, Wang YH, Zhang JJ. Epithelial-to-mesenchymal transdifferentiation of renal tubular epithelial cell mediated by oxidative stress and intervention effect of probucol in diabetic nephropathy rats. Renal Fail. 2012;34:1244–51.

    Article 

    Google Scholar
     

  • Derangula K, Javalgekar M, Kumar Arruri V, Gundu C, Kumar Kalvala A, Kumar A. Probucol attenuates NF-κB/NLRP3 signalling and augments Nrf-2 mediated antioxidant defence in nerve injury induced neuropathic pain. Int Immunopharmacol. 2022;102:108397.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu HW, Luo Y, Zhou YF, Chen ZP. Probucol Prevents Diabetes-Induced Retinal Neuronal Degeneration through Upregulating Nrf2. Biomed Res Int. 2020;2020.

  • Zhou X, Ai S, Chen Z, Li C. Probucol promotes high glucose-induced proliferation and inhibits apoptosis by reducing reactive oxygen species generation in Müller cells. Int Ophthalmol. 2019;39:2833–42.

    Article 
    PubMed 

    Google Scholar
     

  • Mooranian A, Zamani N, Takechi R, Al-Sallami H, Mikov M, Goločorbin-Kon S, et al. Probucol-poly(meth)acrylate-bile acid nanoparticles increase IL-10, and primary bile acids in prediabetic mice. Ther Deliv. 2019;10:563–71.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mamo JC, Lam V, Al-Salami H, Brook E, Mooranian A, Nesbit M, et al. Sodium alginate capsulation increased brain delivery of probucol and suppressed neuroinflammation and neurodegeneration. Ther Del. 2018;9:703–9.

    Article 
    CAS 

    Google Scholar
     

  • Santos DB, Colle D, Moreira ELG, Hort MA, Godoi M, LeDouaron G, et al. Succinobucol, a non-statin hypocholesterolemic drug, prevents premotor symptoms and nigrostriatal neurodegeneration in an experimental model of Parkinson’s disease. Mol Neurobiol. 2017;54:1513–30.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ribeiro RP, Santos DB, Colle D, Naime AA, Gonçalves CL, Ghizoni H, et al. Decreased forelimb ability in mice intracerebroventricularly injected with low dose 6-hydroxidopamine: a model on the dissociation of bradykinesia from hypokinesia. Behav Brain Res. 2016;305:30–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Colle D, Santos DB, Hartwig JM, Godoi M, Braga AL, Farina M. Succinobucol versus probucol: Higher efficiency of succinobucol in mitigating 3-NP-induced brain mitochondrial dysfunction and oxidative stress in vitro. Mitochondrion. 2013;13:125–33.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Colle D, Santos DB, Hartwig JM, Godoi M, Engel DF, de Bem AF, Braga AL, et al. Succinobucol, a lipid-lowering drug, protects against 3-nitropropionic acid-induced mitochondrial dysfunction and oxidative stress in SH-SY5Y cells via upregulation of glutathione levels and glutamate cysteine ligase activity. Mol Neurobiol. 2016;53:1280–95.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bueno DC, Canto RFS, de Souza V, Andreguetti RR, Barbosa FAR, Naime AA, et al. New probucol analogues inhibit ferroptosis, improve mitochondrial parameters, and induce glutathione peroxidase in HT22 cells. Mol Neurobiol. 2020;57:3273–90.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Naime AA, Barbosa FAR, Bueno DC, Curi Pedrosa R, Canto RFS, Colle D, et al. Prevention of ferroptosis in acute scenarios: an in vitro study with classic and novel anti-ferroptotic compounds. Free Radic Res. 2021;55:1062–79.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jacques MT, de Souza V, Barbosa FAR, Faria Santos Canto R, Lopes SC, Prediger RD, et al. Novel probucol analogue, 4,4′-Diselanediylbis (2,6-di-tert-butylphenol), prevents oxidative glutamate neurotoxicity in vitro and confers neuroprotection in a rodent model of ischemic stroke. ACS Chem Neurosci. 2023;14:2857–67.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Quispe RL, Canto RFS, Jaramillo ML, Barbosa FAR, Braga AL, de Bem AF, et al. Design, synthesis, and in vitro evaluation of a novel probucol derivative: protective activity in neuronal cells through GPx upregulation. Mol Neurobiol. 2018;55:7619–34.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cynshi O, Kawabe Y, Suzuki T, Takashima Y, Kaise H, Nakamura M, et al. Antiatherogenic effects of the antioxidant BO-653 in three different animal models. Proc Natl Acad Sci U S A. 1998;95:10123–8.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Takabe W, Kodama T, Hamakubo T, Tanaka K, Suzuki T, Aburatani H, et al. Anti-atherogenic antioxidants regulate the expression and function of proteasome α-type subunits in human endothelial cells. J Biol Chem. 2001;276:40497–501.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Müller K, Carpenter KLH, Freeman MA, Mitchinson MJ. Antioxidant BO-653 and human macrophage-mediated LDL oxidation. Free Radic Res. 1999;30:59–71.

    Article 
    PubMed 

    Google Scholar
     

  • Meng CQ. BO-653. Chugai. Curr Opin Investig Drugs. 2003;4:342–6.

    PubMed 
    CAS 

    Google Scholar
     

  • Meng CQ, Somers PK, Hoong LK, Zheng XS, Ye Z, Worsencroft KJ, et al. Discovery of novel phenolic antioxidants as inhibitors of vascular cell adhesion molecule-1 expression for use in chronic inflammatory diseases. J Med Chem. 2004;47:6420–32.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kunsch C, Luchoomun J, Chen XL, Dodd GL, Karu KS, Meng CQ, et al. AGIX-4207 [2-[4-[[1-[[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]thio]-1-methylethyl]thio]-2,6-bis(1,1-dimethylethyl)phenoxy]acetic acid], a novel antioxidant and anti-inflammatory compound: cellular and biochemical characterization of antioxidant activity and inhibition of redox-sensitive inflammatory gene expression. J Pharmacol Exp Ther. 2005;313:492–501.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu BJ, Kathir K, Witting PK, Beck K, Choy K, Li C, et al. Antioxidants protect from atherosclerosis by a heme oxygenase-1 pathway that is independent of free radical scavenging. J Exp Med. 2006;203:1117–27.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Johnson MB, Heineke EW, Rhinehart BL, Sheetz MJ, Barnhart RL, Robinson KM. MDL 29311 antioxidant with marked lipid-and glucose-lowering activity in diabetic rats and mice. Diabetes. 1993;42:1179–86.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sheetz MJ, Barnhart RL, Jackson RL, Robinson KM. MDL 29311, an analog of probucol, decreases triglycerides in rats by increasing hepatic clearance of very-low-density lipoprotein. Metabolism. 1994;43:233–40.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wagle SR, Kovacevic B, Ionescu CM, Walker D, Jones M, Carey L, et al. Pharmacological and biological study of microencapsulated probucol-secondary bile acid in a diseased mouse model. Pharmaceutics. 2021;13:1223.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Description of Image

    Source link