Scientific Papers

Plant effects on microbiome composition are constrained by environmental conditions in a successional grassland | Environmental Microbiome

Description of Image

  • Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, et al. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev. 2018;42:335–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harantová L, Mudrák O, Kohout P, Elhottová D, Frouz J, Baldrian P. Development of microbial community during primary succession in areas degraded by mining activities. L Degrad Dev. 2017;28:2574–84.

    Article 

    Google Scholar
     

  • Knelman JE, Legg TM, O’Neill SP, Washenberger CL, González A, Cleveland CC, et al. Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biol Biochem. 2012;46:172–80.

    Article 
    CAS 

    Google Scholar
     

  • Chen Y, Xi J, Xiao M, Wang S, Chen W, Liu F et al. Soil fungal communities show more specificity than bacteria for plant species composition in a temperate forest in China. BMC Microbiol. 2022;22.

  • Cassman NA, Leite MFA, Pan Y, De Hollander M, Van Veen JA, Kuramae EE. Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland. Sci Rep. 2016;6:23680.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bacete L, Mélida H, Miedes E, Molina A. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. Plant J. 2018;93:614–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meychik NR, Yermakov IP. Ion exchange properties of plant root cell walls. Plant Soil 2001 2342. 2001;234:181–93.

    CAS 

    Google Scholar
     

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett. 2008;11:1065–71.

    Article 
    PubMed 

    Google Scholar
     

  • Dietz S, Herz K, Gorzolka K, Jandt U, Bruelheide H, Scheel D. Root exudate composition of grass and forb species in natural grasslands. Sci Rep. 2020;10.

  • Herz K, Dietz S, Gorzolka K, Haider S, Jandt U, Scheel D et al. Linking root exudates to functional plant traits. PLoS ONE. 2018;13.

  • Rathore N, Hanzelková V, Dostálek T, Semerád J, Schnablová R, Cajthaml T, et al. Species phylogeny, ecology, and root traits as predictors of root exudate composition. New Phytol. 2023;239:1212–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hannula SE, Heinen R, Huberty M, Steinauer K, De Long JR, Jongen R, et al. Persistence of plant-mediated microbial soil legacy effects in soil and inside roots. Nat Commun. 2021;12:1–13.

    Article 

    Google Scholar
     

  • Kuťáková E, Mészárošová L, Baldrian P, Münzbergová Z. Evaluating the role of biotic and chemical components of plant-soil feedback of primary successional plants. Biol Fertil Soils. 2020;56:345–58.

    Article 

    Google Scholar
     

  • LeBlanc N, Kinkel LL, Kistler HC. Soil fungal communities respond to grassland plant community richness and soil edaphics. Microb Ecol. 2015;70:188–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Semchenko M, Leff JW, Lozano YM, Saar S, Davison J, Wilkinson A et al. Fungal diversity regulates plant-soil feedbacks in temperate grassland. Sci Adv. 2018;4.

  • Tkacz A, Bestion E, Bo Z, Hortala M, Poole PS. Influence of plant fraction, soil, and plant species on microbiota: a multikingdom comparison. MBio. 2020;11.

  • Fox A, Lüscher A, Widmer F. Plant species identity drives soil microbial community structures that persist under a following crop. Ecol Evol. 2020;10:8652–68.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • ‘t Zandt D, Kolaříková Z, Cajthaml T, Münzbergová Z, editors. Plant community stability is associated with a decoupling of prokaryote and fungal soil networks. Nat Commun. 2023;14.

  • Leff JW, Bardgett RD, Wilkinson A, Jackson BG, Pritchard WJ, De Long JR, et al. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME J. 2018;12:1794–805.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM. Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol. 2008;74:738–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Vries FT, Williams A, Stringer F, Willcocks R, McEwing R, Langridge H, et al. Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. New Phytol. 2019;224:132–45.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhalnina K, Louie KB, Hao Z, Mansoori N, Da Rocha UN, Shi S, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol. 2018;3:470–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao Y, Yang Y, Ling W, Kong H, Zhu X. Gradient distribution of root exudates and polycyclic aromatic hydrocarbons in rhizosphere soil. Soil Sci Soc Am J. 2011;75:1694–703.

    Article 
    CAS 

    Google Scholar
     

  • Ulbrich TC, Rivas-Ubach A, Tiemann LK, Friesen ML, Evans SE. Plant root exudates and rhizosphere bacterial communities shift with neighbor context. Soil Biol Biochem. 2022;172:108753.

    Article 
    CAS 

    Google Scholar
     

  • Vieira S, Sikorski J, Dietz S, Herz K, Schrumpf M, Bruelheide H, et al. Drivers of the composition of active rhizosphere bacterial communities in temperate grasslands. ISME J. 2020;14:463–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuťáková E, Mészárošová L, Baldrian P, Münzbergová Z, Herben T. Plant–soil feedbacks in a diverse grassland: soil remembers, but not too much. J Ecol. 2023;111:1203–17.

    Article 

    Google Scholar
     

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. The importance of the microbiome of the plant holobiont. New Phytol. 2015;206:1196–206.

    Article 
    PubMed 

    Google Scholar
     

  • Luo J, Tao Q, Jupa R, Liu Y, Wu K, Song Y, et al. Role of vertical transmission of shoot endophytes in root-associated microbiome assembly and heavy metal hyperaccumulation in sedum alfredii. Environ Sci Technol. 2019;53:6954–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frank AC, Guzmán JPS, Shay JE. Transmission of bacterial endophytes. Microorganisms. 2017;5.

  • Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A. 2015;112:E911–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci U S A. 2018;115:E1157–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeoh YK, Dennis PG, Paungfoo-Lonhienne C, Weber L, Brackin R, Ragan MA et al. Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nat Commun. 2017;8.

  • Kohout P, Bahram M, Põlme S, Tedersoo L. Elevation, space and host plant species structure ericaceae root-associated fungal communities in Papua New Guinea. Fungal Ecol. 2017;30:112–21.

    Article 

    Google Scholar
     

  • Kumar M, Brader G, Sessitsch A, Mäki A, van Elsas JD, Nissinen R. Plants assemble species specific bacterial communities from common core taxa in three arcto-alpine climate zones. Front Microbiol. 2017;8 JAN:12.

  • Vos M, Wolf AB, Jennings SJ, Kowalchuk GA. Micro-scale determinants of bacterial diversity in soil. FEMS Microbiol Rev. 2013;37:936–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Figueiredo AF, Boy J, Guggenberger G. Common mycorrhizae network: a review of the theories and mechanisms behind underground interactions. Front Fungal Biol. 2021;2:48.

    Article 

    Google Scholar
     

  • Vannier N, Bittebiere AK, Mony C, Vandenkoornhuyse P. Root endophytic fungi impact host plant biomass and respond to plant composition at varying spatio-temporal scales. Fungal Ecol. 2020;44:100907.

    Article 

    Google Scholar
     

  • Mony C, Gaudu V, Ricono C, Jambon O, Vandenkoornhuyse P. Plant neighbours shape fungal assemblages associated with plant roots: a new understanding of niche-partitioning in plant communities. Funct Ecol. 2021;35:1768–82.

    Article 
    CAS 

    Google Scholar
     

  • Kubát K, Bělohlávková R. Klíč ke květeně České republiky. 2002;927.

  • Zbíral J. Analýza půd I. Ústřední kontrolní a zkušební ústav zemědělský. Laboratorní odbor; 2002.

  • Hoogsteen MJJ, Lantinga EA, Bakker EJ, Tittonell PA. An evaluation of the loss-on-ignition method for determining the soil organic matter content of calcareous soils. Commun Soil Sci Plant Anal. 2018;49:1541–52.

    Article 
    CAS 

    Google Scholar
     

  • Řezáčová V, Slavíková R, Konvalinková T, Zemková L, Řezáč M, Gryndler M, et al. Geography and habitat predominate over climate influences on arbuscular mycorrhizal fungal communities of mid-european meadows. Mycorrhiza. 2019;29:567–79.

    Article 
    PubMed 

    Google Scholar
     

  • Sagova-Mareckova M, Cermak L, Novotna J, Plhackova K, Forstova J, Kopecky J. Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl Environ Microbiol. 2008;74:2902–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, et al. New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol. 2012;82:666–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Větrovský T, Baldrian P, Morais D. SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34:2292–4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aronesty E. Comparison of sequencing utility programs. Open Bioinforma J. 2013;7:1–8.

    Article 

    Google Scholar
     

  • Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol. 2013;4:914–9.

    Article 

    Google Scholar
     

  • Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47:D259–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Põlme S, Abarenkov K, Henrik Nilsson R, Lindahl BD, Clemmensen KE, Kauserud H, et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 2020;105:1–16.

    Article 

    Google Scholar
     

  • R Core Team, R Development Core Team. R: A language and environment for statistical computing. 2021.

  • Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR et al. vegan: community ecology package. 2022.

  • Borcard D, Gillet F, Legendre P. Numerical Ecology with R. Numer Ecol with R. 2011. https://doi.org/10.1007/978-1-4419-7976-6

  • Legendre P, Borcard D, Peres-Neto PR. ANALYZING BETA DIVERSITY: PARTITIONING THE SPATIAL VARIATION OF COMMUNITY COMPOSITION DATA. Ecol Monogr. 2005;75:435–50.

    Article 

    Google Scholar
     

  • Borcard D, Legendre P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Modell. 2002;153:51–68.

    Article 

    Google Scholar
     

  • Dray S, Bauman D, Blanchet G, Borcard D, Clappe S, Guénard G et al. {adespatial}: multivariate multiscale spatial analysis. 2023.

  • Liu W, Yang X, Jiang L, Guo L, Chen Y, Yang S, et al. Partitioning of beta-diversity reveals distinct assembly mechanisms of plant and soil microbial communities in response to nitrogen enrichment. Ecol Evol. 2022;12:e9016.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gyeong H, Hyun CU, Kim SC, Tripathi BM, Yun J, Kim J, et al. Contrasting early successional dynamics of bacterial and fungal communities in recently deglaciated soils of the maritime Antarctic. Mol Ecol. 2021;30:4231–44.

    Article 
    PubMed 

    Google Scholar
     

  • Štursová M, Bárta J, Šantrůčková H, Baldrian P. Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil. FEMS Microbiol Ecol. 2016;92:fiw185.

    Article 
    PubMed 

    Google Scholar
     

  • Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A. 2006;103:626–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glassman SI, Wang IJ, Bruns TD. Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales. Mol Ecol. 2017;26:6960–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tedersoo L, Anslan S, Bahram M, Drenkhan R, Pritsch K, Buegger F, et al. Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in Northern Europe. Front Microbiol. 2020;11:1953.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH. Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J. 2010;4:337–45.

    Article 
    PubMed 

    Google Scholar
     

  • Seaton FM, Griffiths RI, Goodall T, Lebron I, Norton LR. Soil bacterial and fungal communities show within field heterogeneity that varies by land management and distance metric. Soil Biol Biochem. 2023;177:108920.

    Article 
    CAS 

    Google Scholar
     

  • Franklin RB, Mills AL. Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field. FEMS Microbiol Ecol. 2003;44:335–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lemoine NP, Adams BJ, Diaz M, Dragone NB, Franco ALC, Fierer N et al. Strong dispersal limitation of microbial communities at Shackleton glacier. Antarctica mSystems. 2023;8.

  • Hammarlund SP, Harcombe WR. Refining the stress gradient hypothesis in a microbial community. Proc Natl Acad Sci USA. 2019;116:15760–2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guyonnet JP, Guillemet M, Dubost A, Simon L, Ortet P, Barakat M et al. Plant nutrient resource use strategies shape active rhizosphere microbiota through root exudation. Front Plant Sci. 2018;871.

  • King AJ, Farrer EC, Suding KN, Schmidt SK, Erratum. Cooccurrence patterns of plants and soil bacteria in the high-alpine subnival zone track environmental harshness. Front Microbiol. 2013;4 AUG:347.


    Google Scholar
     

  • Berendse F, Möller F. Effects of competition on root-shoot allocation in Plantago lanceolata L.: adaptive plasticity or ontogenetic drift? Herbaceous plant Ecol Recent Adv. Plant Ecol. 2009:203–9.

  • Description of Image

    Source link

    About the author

    admin

    Add Comment

    Click here to post a comment