Scientific Papers

Malaria transmission potential of Anopheles gambiae s.l. in indoor residual spraying areas with clothianidin 50 WG in northern Benin | Tropical Medicine and Health

Description of Image

  • Vector-borne diseases. 2020. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases.

  • World Health Organization. Global messaging briefing kit, world malaria report 2022. https://cdn.who.int/media/docs/default-source/malaria/world-malaria-reports/world-malaria-report-2022-global-briefing-kit-eng.pdf?sfvrsn=5ec7ec5c_6.

  • Crutcher JM, Hoffman SL. Malaria. In: Baron S, editor. Medical microbiology. 4th ed. Galveston: University of Texas Medical Branch at Galveston; 1996.


    Google Scholar
     

  • World malaria report. Med. Malar. Venture. 2022. https://www.mmv.org/newsroom/news-resources-search/world-malaria-report-2022.

  • Bayoh MN, Thomas CJ, Lindsay SW. Mapping distributions of chromosomal forms of Anopheles gambiae in West Africa using climate data. Med Vet Entomol. 2001;15:267–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • PMI. U.S. president’s malaria initiative Benin malaria operational plan FY 2022. 2022.

  • Aïkpon R, Sèzonlin M, Tokponon F, Okè M, Oussou O, Oké-Agbo F, et al. Good performances but short lasting efficacy of actellic 50 EC indoor residual spraying (IRS) on malaria transmission in Benin, West Africa. Parasit Vectors. 2014;7:256.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salako AS, Dagnon F, Sovi A, Padonou GG, Aïkpon R, Ahogni I, et al. Efficacy of actellic 300 CS-based indoor residual spraying on key entomological indicators of malaria transmission in Alibori and Donga, two regions of northern Benin. Parasit Vectors. 2019;12:612.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fassinou AJYH, Koukpo CZ, Ossè RA, Agossa FR, Azondékon R, Sominahouin A, et al. Pesticides and the evolution of the genetic structure of Anopheles coluzzii populations in some localities in Benin (West Africa). Malar J. 2019;18:407.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nkya TE, Poupardin R, Laporte F, Akhouayri I, Mosha F, Magesa S, et al. Impact of agriculture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions. Parasit Vectors. 2014;7:480.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ochomo EO, Bayoh NM, Walker ED, Abongo BO, Ombok MO, Ouma C, et al. The efficacy of long-lasting nets with declining physical integrity may be compromised in areas with high levels of pyrethroid resistance. Malar J. 2013;12:368.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sagbohan HW, Kpanou CD, Sovi A, Osse R, Sidick A, Adoha C, et al. Pyrethroid resistance intensity in Anopheles gambiae s.l. from different agricultural production zones in Benin, West Africa. Vector Borne Zoonotic Dis. 2022;22:39–47.

    PubMed 

    Google Scholar
     

  • Aïkpon R, Agossa F, Ossè R, Oussou O, Aïzoun N, Oké-Agbo F, et al. Bendiocarb resistance in Anopheles gambiae s.l. populations from Atacora department in Benin, West Africa: a threat for malaria vector control. Parasit Vectors. 2013;6:192.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salako AS, Ahogni I, Aïkpon R, Sidick A, Dagnon F, Sovi A, et al. Insecticide resistance status, frequency of L1014F Kdr and G119S Ace-1 mutations, and expression of detoxification enzymes in Anopheles gambiae (s.l.) in two regions of northern Benin in preparation for indoor residual spraying. Parasit Vectors. 2018;11:618.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • PMI, Vectorlink Benin. The PMI Vectorlink Benin 2021 end of spray report (EOSR). 2021. https://d1u4sg1s9ptc4z.cloudfront.net/uploads/2022/02/End-of-Spray-Report-Benin-2021.pdf.

  • Tomizawa M, Casida JE. Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol. 2005;45:247–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ullah F, Gul H, Tariq K, Desneux N, Gao X, Song D. Fitness costs in clothianidin-resistant population of the melon aphid, Aphis gossypii. PLoS ONE. 2020;15: e0238707.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Odjo EM, Salako AS, Padonou GG, Yovogan B, Adoha CJ, Adjottin B, et al. What can be learned from the residual efficacy of three formulations of insecticides (pirimiphos-methyl, clothianidin and deltamethrin mixture, and clothianidin alone) in large-scale in community trial in North Benin, West Africa? Malar J. 2023;22:150.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong K, Du Y, Rinkevich F, Nomura Y, Xu P, Wang L, et al. Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochem Mol Biol. 2014;50:1–17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williamson MS, Martinez-Torres D, Hick CA, Devonshire AL. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol Gen Genet. 1996;252:51–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clarkson CS, Miles A, Harding NJ, O’Reilly AO, Weetman D, Kwiatkowski D, et al. The genetic architecture of target-site resistance to pyrethroid insecticides in the African malaria vectors Anopheles gambiae and Anopheles coluzzii. Mol Ecol. 2021;30:5303–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Etang J, Mandeng SE, Nwane P, Awono-Ambene HP, Bigoga JD, Ekoko WE, et al. Patterns of Kdr-L995F allele emergence alongside detoxifying enzymes associated with deltamethrin resistance in Anopheles gambiae s.l. from North Cameroon. Pathogens. 2022;11:253.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Bergé JB, Devonshire AL, et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998;7:179–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol. 2000;9:491–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santolamazza F, Mancini E, Simard F, Qi Y, Tu Z, della Torre A. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar J. 2008;7:163.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reimer L, Fondjo E, Patchoké S, Diallo B, Lee Y, Ng A, et al. Relationship between kdr mutation and resistance to pyrethroid and DDT insecticides in natural populations of Anopheles gambiae. J Med Entomol. 2008;45:260–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grau-Bové X, Lucas E, Pipini D, Rippon E, van’t Hof AE, Constant E, et al. Resistance to pirimiphos-methyl in West African Anopheles is spreading via duplication and introgression of the Ace1 locus. PLOS Genet. 2021;17: e1009253.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feyereisen R, Dermauw W, Van Leeuwen T. Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods. Pestic Biochem Physiol. 2015;121:61–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greenblatt HM, Guillou C, Guénard D, Argaman A, Botti S, Badet B, et al. The complex of a bivalent derivative of galanthamine with torpedo acetylcholinesterase displays drastic deformation of the active-site gorge: implications for structure-based drug design. J Am Chem Soc. 2004;126:15405–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oppenoorth FJ. Biochemistry and genetics of insecticide resistance. Compr Insect Physiol Biochem Pharmacol Control. 1985;12:731–73.


    Google Scholar
     

  • Djogbénou L, Pasteur N, Akogbéto M, Weill M, Chandre F. Insecticide resistance in the Anopheles gambiae complex in Benin: a nationwide survey. Med Vet Entomol. 2011;25:256–67.

    Article 
    PubMed 

    Google Scholar
     

  • Soderlund DM, Bloomquist JR. Molecular mechanisms of insecticide resistance. In: Pesticide resistance in arthropods. Boston: Springer; 1990. p. 58–96.

    Chapter 

    Google Scholar
     

  • Davies TGE, Field LM, Usherwood PNR, Williamson MS. A comparative study of voltage-gated sodium channels in the Insecta: implications for pyrethroid resistance in Anopheline and other Neopteran species. Insect Mol Biol. 2007;16:361–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RGPH-4. Cahier des villages et quartiers de ville du département de la Donga. Institut National de la Statistique et de l’Analyse Economique (INSAE); 2013. p. 24.

  • RGPH-4. Cahier des villages et quartiers de ville du département du Borgou. Institut National de la Statistique et de l’Analyse Economique (INSAE); 2013. p. 31.

  • RGPH-4. Cahier des villages et quartiers de ville du département de l’Alibori. Institut National de la Statistique et de l’Analyse Economique (INSAE); 2013. p. 26.

  • Gillies MT, Coetzee M. A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical Region). Johannesburg: South African Institute for Medical Research; 1987.


    Google Scholar
     

  • Gillies MT, De Meillon B. The Anophelinae of Africa south of the Sahara (Ethiopian zoogeographical region). 2nd ed. Johannesburg: South African Institute for Medical Research; 1968.


    Google Scholar
     

  • Wirtz RA, Burkot TR, Andre RG, Rosenberg R, Collins WE, Roberts DR. Identification of Plasmodium vivax sporozoites in mosquitoes using an enzyme-linked immunosorbent assay. Am J Trop Med Hyg. 1985;34:1048–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Myriam et Cécile. Protocoles de biologie moléculaire en usage au lin. Institut de recherche pour le développement IRD. 2003.

  • Weill M, Lutfalla G, Mogensen K, Chandre F, Berthomieu A, Berticat C, et al. Comparative genomics: insecticide resistance in mosquito vectors. Nature. 2003;423:136–7.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu W, Liu Z, Fan X, Zhang X, Qiao X, Huang J. Nicotinic acetylcholine receptor modulator insecticides act on diverse receptor subtypes with distinct subunit compositions. PLoS Genet. 2022;18: e1009920.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costas-Ferreira C, Faro LRF. Neurotoxic effects of neonicotinoids on mammals: what is there beyond the activation of nicotinic acetylcholine receptors?—A systematic review. Int J Mol Sci. 2021;22:8413.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elamathi N, Barik TK, Verma V, Velamuri PS, Bhatt RM, Sharma SK, et al. Standardization of a bottle assay—an indigenous method for laboratory and field monitoring of insecticide resistance and comparison with WHO adult susceptibility test. Parasitol Res. 2014;113:3859–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ngufor C, N’Guessan R, Fagbohoun J, Subramaniam K, Odjo A, Fongnikin A, et al. Insecticide resistance profile of Anopheles gambiae from a phase II field station in Cové, southern Benin: implications for the evaluation of novel vector control products. Malar J. 2015;14:464.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yahouédo GA, Cornelie S, Djègbè I, Ahlonsou J, Aboubakar S, Soares C, et al. Dynamics of pyrethroid resistance in malaria vectors in southern Benin following a large scale implementation of vector control interventions. Parasit Vectors. 2016;9:385.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Awolola TS, Oduola OA, Strode C, Koekemoer LL, Brooke B, Ranson H. Evidence of multiple pyrethroid resistance mechanisms in the malaria vector Anopheles gambiae sensu stricto from Nigeria. Trans R Soc Trop Med Hyg. 2009;103:1139–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casimiro S, Coleman M, Hemingway J, Sharp B. Insecticide resistance in Anopheles arabiensis and Anopheles gambiae from Mozambique. J Med Entomol. 2006;43:276–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nwane P, Etang J, Chouaibou M, Toto JC, Kerah-Hinzoumbé C, Mimpfoundi R, et al. Trends in DDT and pyrethroid resistance in Anopheles gambiae s.s. populations from urban and agro-industrial settings in southern Cameroon. BMC Infect Dis. 2009;9:163.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ochomo E, Bayoh MN, Brogdon WG, Gimnig JE, Ouma C, Vulule JM, et al. Pyrethroid resistance in Anopheles gambiae s.s. and Anopheles arabiensis in western Kenya: phenotypic, metabolic and target site characterizations of three populations. Med Vet Entomol. 2013;27:156–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams J, Ingham VA, Morris M, Toé KH, Hien AS, Morgan JC, et al. Sympatric populations of the Anopheles gambiae complex in Southwest Burkina Faso evolve multiple diverse resistance mechanisms in response to intense selection pressure with pyrethroids. Insects. 2022;13:247.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yadouleton AW, Padonou G, Asidi A, Moiroux N, Bio-Banganna S, Corbel V, et al. Insecticide resistance status in Anopheles gambiae in southern Benin. Malar J. 2010;9:83.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yadouleton AWM, Asidi A, Djouaka RF, Braïma J, Agossou CD, Akogbeto MC. Development of vegetable farming: a cause of the emergence of insecticide resistance in populations of Anopheles gambiae in urban areas of Benin. Malar J. 2009;8:103.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tchouakui M, Assatse T, Mugenzi LMJ, Menze BD, Nguiffo-Nguete D, Tchapga W, et al. Comparative study of the effect of solvents on the efficacy of neonicotinoid insecticides against malaria vector populations across Africa. Infect Dis Poverty. 2022;11:35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zoh MG, Bonneville J-M, Tutagana J, Laporte F, Fodjo BK, Mouhamadou CS, et al. Neonicotinoid and pyrethroid combination: a tool to manage insecticide resistance in malaria vectors? Insights from experimental evolution. bioRxiv. 2021. https://doi.org/10.1101/2021.06.09.447494.

    Article 

    Google Scholar
     

  • Yadouleton A, Aikpon R, Houndeton G, Aboubacar S, Ursins F, Tchibçozo C, et al. Données entomologiques préliminaires pour la mise en place d’une pulvérisation intra-domiciliaire à grande échelle dans la commune de Corpargo au Nord-Est du Bénin. Int J Biol Chem Sci. 2018;12:1993–2003.

    Article 
    CAS 

    Google Scholar
     

  • Hounnakan AC, Ayadji APV, Vodungbo V, Hounkpe E, Gbekan P, Wadochedohoun R, et al. Annuaire des statistiques sanitaires. 2019.

  • Ossè R, Gnanguenon V, Sèzonlin M, Aïkpon R, Padonou G, Yadouléton A, et al. Relationship between the presence of kdr and Ace-1 mutations and the infection with Plasmodium falciparum in Anopheles gambiae s.s. in Benin. Parasitol Vector Biol. 2012;4(3):31–9.


    Google Scholar
     

  • Mitri C, Markianos K, Guelbeogo WM, Bischoff E, Gneme A, Eiglmeier K, et al. The kdr-bearing haplotype and susceptibility to Plasmodium falciparum in Anopheles gambiae: genetic correlation and functional testing. Malar J. 2015;14:391.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Description of Image

    Source link