Scientific Papers

Transcutaneous auricular vagus nerve stimulation for the treatment of myoarthropatic symptoms in patients with craniomandibular dysfunction – a protocol for a randomized and controlled pilot trial | Pilot and Feasibility Studies

Description of Image

  • Gauer RL, Semidey MJ. Diagnosis and treatment of temporomandibular disorders. Am Fam Physician. 2015;91(6):378–86.

    PubMed 

    Google Scholar
     

  • Karkazi F, Ozdemir F. Temporomandibular disorders: fundamental questions and answers. Turk J Orthod. 2020;33(4):246–52.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plesh O, Adams SH, Gansky SA. Temporomandibular joint and muscle disorder-type pain and comorbid pains in a national US sample. J Orofac Pain. 2011;25(3):190–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manfredini D, Guarda-Nardini L, Winocur E, Piccotti F, Ahlberg J, Lobbezoo F. Research diagnostic criteria for temporomandibular disorders: a systematic review of axis I epidemiologic findings. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112(4):453–62.

    Article 
    PubMed 

    Google Scholar
     

  • Boscato N, Nascimento GG, Leite FRM, Horta BL, Svensson P, Demarco FF. Role of occlusal factors on probable bruxism and orofacial pain: data from the 1982 Pelotas birth cohort study. J Dent. 2021;113:103788.

    Article 
    PubMed 

    Google Scholar
     

  • Spalj S, Slaj M, Athanasiou AE, Zak I, Simunovic M, Slaj M. Temporomandibular disorders and orthodontic treatment need in orthodontically untreated children and adolescents. Coll Antropol. 2015;39(1):151–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Magnusson T, Carlsson GE, Egermark I. Changes in subjective symptoms of craniomandibular disorders in children and adolescents during a 10-year period. J Orofac Pain. 1993;7(1):76–82.

    CAS 
    PubMed 

    Google Scholar
     

  • Tsolka P, Walter JD, Wilson RF, Preiskel HW. Occlusal variables, bruxism and temporomandibular disorders: a clinical and kinesiographic assessment. J Oral Rehabil. 1995;22(12):849–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Jundi MA, John MT, Setz JM, Szentpetery A, Kuss O. Meta-analysis of treatment need for temporomandibular disorders in adult nonpatients. J Orofac Pain. 2008;22(2):97–107.

    PubMed 

    Google Scholar
     

  • Manfredini D, Serra-Negra J, Carboncini F, Lobbezoo F. Current concepts of bruxism. Int J Prosthodont. 2017;30(5):437–8.

    Article 
    PubMed 

    Google Scholar
     

  • Mirhashemi A, Khami MR, Kharazifard M, Bahrami R. The evaluation of the relationship between oral habits prevalence and COVID-19 pandemic in adults and adolescents: a systematic review. Front Public Health. 2022;10:860185.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • American Dental Association. HPI Poll: dentists see increased prevalence of stress-related oral health conditions. Available from: https://www.ada.org/publications/ada-news/2020/september/hpi-poll-dentists-see-increase-in-patients-stress-related-oral-health-conditions. Accessed: 10 May 2023.

  • World Health Organization. Mental Health and COVID-19: early evidence of the pandemic’s impact 2022. Available from: https://www.who.int/news/item/02-03-2022-covid-19-pandemic-triggers-25-increase-in-prevalence-of-anxiety-and-depression-worldwide. Accessed: 10 May 2023.

  • Pieh C, Budimir S, Delgadillo J, Barkham M, Fontaine JRJ, Probst T. Mental health during COVID-19 lockdown in the United Kingdom. Psychosom Med. 2021;83(4):328–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emodi-Perlman A, Eli I, Smardz J, Uziel N, Wieckiewicz G, Gilon E, et al. Temporomandibular disorders and bruxism outbreak as a possible factor of orofacial pain worsening during the COVID-19 Pandemic-concomitant research in two countries. J Clin Med. 2020;9(10):3250.

  • Saccomanno S, Bernabei M, Scoppa F, Pirino A, Mastrapasqua R, Visco MA. Coronavirus lockdown as a major life stressor: does it affect TMD symptoms? Int J Environ Res Public Health. 2020;17(23):8907.

  • De Caxias FP, Athayde FRF, Januzzi MS, Pinheiro LV, Turcio KHL. Impact event and orofacial pain amid the COVID-19 pandemic in Brazil: a cross-sectional epidemiological study. J Appl Oral Sci. 2021;29:e20210122.

    Article 
    PubMed 

    Google Scholar
     

  • Hirsch V. COVID-19: Stress, der uns mit den Zähnen knirschen lässt. Prophylaxe Journal 1/2022. 2022.


    Google Scholar
     

  • Bilir H, Kurt H. Influence of stabilization splint thickness on temporomandibular disorders. Int J Prosthodont. 2022;35(2):163–73.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang SH, He KX, Lin CJ, Liu XD, Wu L, Chen J, et al. Efficacy of occlusal splints in the treatment of temporomandibular disorders: a systematic review of randomized controlled trials. Acta Odontol Scand. 2020;78(8):580–9.

    Article 
    PubMed 

    Google Scholar
     

  • Li DTS, Leung YY. Temporomandibular disorders: current concepts and controversies in diagnosis and management. Diagnostics (Basel). 2021;11(3):459.

  • Ismail F, Demling A, Hessling K, Fink M, Stiesch-Scholz M. Short-term efficacy of physical therapy compared to splint therapy in treatment of arthrogenous TMD. J Oral Rehabil. 2007;34(11):807–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schindler HJ, Türp JC, Sommer C, Kares H, Nilges P, Hugger A. Therapy of masticatory muscle pain: recommendations for clinical management. Schmerz. 2007;21(2):102–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Türp JC, Komine F, Hugger A. Efficacy of stabilization splints for the management of patients with masticatory muscle pain: a qualitative systematic review. Clin Oral Investig. 2004;8(4):179–95.

    Article 
    PubMed 

    Google Scholar
     

  • Schindler HJ, Hugger A, Türp JC. The therapy of masticatory muscle pain with oral splints. Z Evid Fortbild Qual Gesundhwes. 2013;107(4–5):297–301.

    Article 
    PubMed 

    Google Scholar
     

  • Hugger A, Schindler HJ, Türp JC, Hugger S. Pharmacological therapy of temporomandibular joint pain. Z Evid Fortbild Qual Gesundhwes. 2013;107(4–5):302–8.

    Article 
    PubMed 

    Google Scholar
     

  • Singer E, Dionne R. A controlled evaluation of ibuprofen and diazepam for chronic orofacial muscle pain. J Orofac Pain. 1997;11(2):139–46.

    CAS 
    PubMed 

    Google Scholar
     

  • Penry JK, Dean JC. Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results. Epilepsia. 1990;31(Suppl 2):S40–3.

    PubMed 

    Google Scholar
     

  • O’Reardon JP, Cristancho P, Peshek AD. Vagus Nerve Stimulation (VNS) and treatment of depression: to the brainstem and beyond. Psychiatry (Edgmont). 2006;3(5):54–63.

    PubMed 

    Google Scholar
     

  • Mwamburi M, Liebler EJ, Tenaglia AT. Cost-effectiveness of gammaCore (non-invasive vagus nerve stimulation) for acute treatment of episodic cluster headache. Am J Manag Care. 2017;23(16 Suppl):S300–6.

    PubMed 

    Google Scholar
     

  • Nemeroff CB, Mayberg HS, Krahl SE, McNamara J, Frazer A, Henry TR, et al. VNS therapy in treatment-resistant depression: clinical evidence and putative neurobiological mechanisms. Neuropsychopharmacology. 2006;31(7):1345–55.

    Article 
    PubMed 

    Google Scholar
     

  • Molero-Chamizo A, Nitsche MA, Bolz A, Andujar Barroso RT, Alameda Bailen JR, Garcia Palomeque JC, et al. Non-invasive transcutaneous vagus nerve stimulation for the treatment of fibromyalgia symptoms: a study protocol. Brain Sci. 2022;12(1):95.

  • Ben-Menachem E, Revesz D, Simon BJ, Silberstein S. Surgically implanted and non-invasive vagus nerve stimulation: a review of efficacy, safety and tolerability. Eur J Neurol. 2015;22(9):1260–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bretherton B, Atkinson L, Murray A, Clancy J, Deuchars S, Deuchars J. Effects of transcutaneous vagus nerve stimulation in individuals aged 55 years or above: potential benefits of daily stimulation. Aging (Albany NY). 2019;11(14):4836–57.

    Article 
    PubMed 

    Google Scholar
     

  • Toffa DH, Touma L, El Meskine T, Bouthillier A, Nguyen DK. Learnings from 30 years of reported efficacy and safety of vagus nerve stimulation (VNS) for epilepsy treatment: a critical review. Seizure. 2020;83:104–23.

    Article 
    PubMed 

    Google Scholar
     

  • Yap JYY, Keatch C, Lambert E, Woods W, Stoddart PR, Kameneva T. Critical review of transcutaneous vagus nerve stimulation: challenges for translation to clinical practice. Front Neurosci. 2020;14:284.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goadsby PJ, Grosberg BM, Mauskop A, Cady R, Simmons KA. Effect of noninvasive vagus nerve stimulation on acute migraine: an open-label pilot study. Cephalalgia. 2014;34(12):986–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Straube A, Ellrich J, Eren O, Blum B, Ruscheweyh R. Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): a randomized, monocentric clinical trial. J Headache Pain. 2015;16:543.

    Article 
    PubMed 

    Google Scholar
     

  • Likar R, Perruchoud C, Kampusch S, Kostenberger M, Sator S, Stremnitzer C, et al. Clinical efficacy of auricular vagus nerve stimulation in the treatment of chronic and acute pain: a systematic review. Schmerz. 2023.

  • Fang J, Rong P, Hong Y, Fan Y, Liu J, Wang H, et al. Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder. Biol Psychiatry. 2016;79(4):266–73.

    Article 
    PubMed 

    Google Scholar
     

  • Hein E, Nowak M, Kiess O, Biermann T, Bayerlein K, Kornhuber J, et al. Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study. J Neural Transm (Vienna). 2013;120(5):821–7.

    Article 
    PubMed 

    Google Scholar
     

  • Ylikoski J, Markkanen M, Pirvola U, Lehtimaki JA, Ylikoski M, Jing Z, et al. Stress and tinnitus; transcutaneous auricular vagal nerve stimulation attenuates tinnitus-triggered stress reaction. Front Psychol. 2020;11:570196.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ylikoski J, Lehtimaki J, Pirvola U, Makitie A, Aarnisalo A, Hyvarinen P, et al. Non-invasive vagus nerve stimulation reduces sympathetic preponderance in patients with tinnitus. Acta Otolaryngol. 2017;137(4):426–31.

    Article 
    PubMed 

    Google Scholar
     

  • Von Korff M, Ormel J, Keefe FJ, Dworkin SF. Grading the severity of chronic pain. Pain. 1992;50(2):133–49.

    Article 

    Google Scholar
     

  • Reißmann DR, John MT, Schierz O, Hirsch C. Eine Kurzversion der RDC/TMD. Schmerz. 2009;23:618–27.

    Article 
    PubMed 

    Google Scholar
     

  • Schiffman E, Ohrbach R, Truelove E, Look J, Anderson G, Goulet JP, et al. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: recommendations of the International RDC/TMD Consortium Network* and Orofacial Pain Special Interest Groupdagger. J Oral Facial Pain Headache. 2014;28(1):6–27.

    Article 
    PubMed 

    Google Scholar
     

  • Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. ed: Lawrence Erlbaum Associates; 1988.

  • Frawley E, Cowman M, Cella M, Cohen D, Ryan E, Hallahan B, et al. Cognitive Remediation and Social Recovery in Early Psychosis (CReSt-R): protocol for a pilot randomised controlled study. Pilot Feasibility Stud. 2022;8(1):109.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mellor K, Albury C, Dutton SJ, Eldridge S, Hopewell S. Recommendations for progression criteria during external randomised pilot trial design, conduct, analysis and reporting. Pilot Feasibility Stud. 2023;9(1):59.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gierthmuehlen M, Hoffken N, Timmesfeld N, Schmieder K, Reinacher-Schick A. Effect of transcutaneous auricular vagal nerve stimulation on the fatigue syndrome in patients with gastrointestinal cancers – FATIVA: a randomized, placebo-controlled pilot study protocol. Pilot Feasibility Stud. 2023;9(1):94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarn J, Legg S, Mitchell S, Simon B, Ng WF. The effects of noninvasive vagus nerve stimulation on fatigue and immune responses in patients with primary Sjogren’s syndrome. Neuromodulation. 2019;22(5):580–5.

    Article 
    PubMed 

    Google Scholar
     

  • Cao J, Zhang Y, Li H, Yan Z, Liu X, Hou X, et al. Different modulation effects of 1 Hz and 20 Hz transcutaneous auricular vagus nerve stimulation on the functional connectivity of the periaqueductal gray in patients with migraine. J Transl Med. 2021;19(1):354.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Liu J, Li H, Yan Z, Liu X, Cao J, et al. Transcutaneous auricular vagus nerve stimulation at 1 Hz modulates locus coeruleus activity and resting state functional connectivity in patients with migraine: an fMRI study. Neuroimage Clin. 2019;24:101971.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo W, Zhang Y, Yan Z, Liu X, Hou X, Chen W, et al. The instant effects of continuous transcutaneous auricular vagus nerve stimulation at acupoints on the functional connectivity of amygdala in migraine without aura: a preliminary study. Neural Plast. 2020;2020:8870589.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16(9):606–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spitzer RL, Kroenke K, Williams JB, Lowe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006;166(10):1092–7.

    Article 
    PubMed 

    Google Scholar
     

  • Kroenke K, Spitzer RL, Williams JB. The PHQ-15: validity of a new measure for evaluating the severity of somatic symptoms. Psychosom Med. 2002;64(2):258–66.

    Article 
    PubMed 

    Google Scholar
     

  • John MT, Micheelis W, Biffar R. Normwerte mundgesundheitsbezogener Lebensqualität für Kurzversionen des Oral Health Impact Profile. Schweiz Monatsschr Zahnmed. 2004;114:784–91.

    PubMed 

    Google Scholar
     

  • Hugger A, Kordaß B, editors. Handbuch Instrumentelle Funktionsanalyse und funktionelle Okklusion. Berlin: Quintessence Publishing; 2018.

  • Hugger S, Schindler HJ, Kordass B, Hugger A. Clinical relevance of surface EMG of the masticatory muscles. (Part 1): resting activity, maximal and submaximal voluntary contraction, symmetry of EMG activity. Int J Comput Dent. 2012;15(4):297–314.

    CAS 
    PubMed 

    Google Scholar
     

  • Ahlers MO, Bernhardt O, Jakstat HA, Kordass B, Turp JC, Schindler HJ, et al. Motion analysis of the mandible: guidelines for standardized analysis of computer-assisted recording of condylar movements. Int J Comput Dent. 2015;18(3):201–23.

    PubMed 

    Google Scholar
     

  • Genheimer H, Andreatta M, Asan E, Pauli P. Reinstatement of contextual conditioned anxiety in virtual reality and the effects of transcutaneous vagus nerve stimulation in humans. Sci Rep. 2017;7(1):17886.

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer R, Ventura-Bort C, Hamm A, Weymar M. Transcutaneous vagus nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control. Cogn Affect Behav Neurosci. 2018;18(4):680–93.

    Article 
    PubMed 

    Google Scholar
     

  • Sclocco R, Garcia RG, Gabriel A, Kettner NW, Napadow V, Barbieri R. Respiratory-gated Auricular Vagal Afferent Nerve Stimulation (RAVANS) effects on autonomic outflow in hypertension. Annu Int Conf IEEE Eng Med Biol Soc. 2017;2017:3130–3.

    PubMed 

    Google Scholar
     

  • Kong J, Fang J, Park J, Li S, Rong P. Treating depression with transcutaneous auricular vagus nerve stimulation: state of the art and future perspectives. Front Psychiatry. 2018;9:20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Redgrave J, Day D, Leung H, Laud PJ, Ali A, Lindert R, et al. Safety and tolerability of transcutaneous vagus nerve stimulation in humans; a systematic review. Brain Stimul. 2018;11(6):1225–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Description of Image

    Source link