Scientific Papers

Monocyte alteration in elderly hip fracture healing: monocyte promising role in bone regeneration | Immunity & Ageing

Description of Image

  • Xia S, Zhang X, Zheng S, Khanabdali R, Kalionis B, Wu J, et al. An update on Inflamm-Aging: mechanisms, Prevention, and treatment. J Immunol Res. 2016;2016:8426874.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panda A, Arjona A, Sapey E, Bai F, Fikrig E, Montgomery RR, et al. Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol. 2009;30(7):325–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cauley JA, Thompson DE, Ensrud KC, Scott JC, Black D. Risk of mortality following clinical fractures. Osteoporos International: J Established as Result Cooperation between Eur Foundation Osteoporos Natl Osteoporos Foundation USA. 2000;11(7):556–61.

    Article 
    CAS 

    Google Scholar
     

  • Green E, Lubahn JD, Evans J. Risk factors, treatment, and outcomes associated with nonunion of the midshaft humerus fracture. J Surg Orthop Adv. 2005;14(2):64–72.

    PubMed 

    Google Scholar
     

  • Duggal NA, Beswetherick A, Upton J, Hampson P, Phillips AC, Lord JM. Depressive symptoms in hip fracture patients are associated with reduced monocyte superoxide production. Exp Gerontol. 2014;54:27–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fulop T, Le Page A, Fortin C, Witkowski JM, Dupuis G, Larbi A. Cellular signaling in the aging immune system. Curr Opin Immunol. 2014;29:105–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol. 2012;24(5):331–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baëhl S, Garneau H, Le Page A, Lorrain D, Viens I, Svotelis A, et al. Altered neutrophil functions in elderly patients during a 6-month follow-up period after a hip fracture. Exp Gerontol. 2015;65:58–68.

    Article 
    PubMed 

    Google Scholar
     

  • Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: phenotypical vs. Funct Differ Front Immunol. 2014;5:514.


    Google Scholar
     

  • Vallet H, Chenevier-Gobeaux C, Villain C, Cohen-Bittan J, Ray P, Epelboin L, et al. Prognostic value of serum procalcitonin after orthopedic surgery in the Elderly Population. The Journals of Gerontology Series A Biological Sciences and Medical Sciences. 2017;72(3):438–43.

    CAS 
    PubMed 

    Google Scholar
     

  • Lu YN, Wang L, Zhang YZ. The promising roles of macrophages in geriatric hip fracture. Front Cell Dev Biol. 2022;10:962990.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong KL, Tai JJ, Wong WC, Han H, Sem X, Yeap WH, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011;118(5):e16–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chan CKF, Gulati GS, Sinha R, Tompkins JV, Lopez M, Carter AC, et al. Identif Hum Skeletal Stem Cell Cell. 2018;175(1):43–56e21.

    CAS 

    Google Scholar
     

  • Patel AA, Zhang Y, Fullerton JN, Boelen L, Rongvaux A, Maini AA, et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med. 2017;214(7):1913–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Metcalf TU, Wilkinson PA, Cameron MJ, Ghneim K, Chiang C, Wertheimer AM et al. Human Monocyte Subsets Are Transcriptionally and Functionally Altered in Aging in Response to Pattern Recognition Receptor Agonists. Journal of immunology (Baltimore, Md: 1950). 2017;199(4):1405-17.

  • Pillai PS, Molony RD, Martinod K, Dong H, Pang IK, Tal MC, et al. Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Sci (New York NY). 2016;352(6284):463–6.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Olingy CE, Dinh HQ, Hedrick CC. Monocyte heterogeneity and functions in cancer. J Leukoc Biol. 2019;106(2):309–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong KL, Yeap WH, Tai JJ, Ong SM, Dang TM, Wong SC. The three human monocyte subsets: implications for health and disease. Immunol Res. 2012;53(1–3):41–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamers AAJ, Dinh HQ, Thomas GD, Marcovecchio P, Blatchley A, Nakao CS et al. Human Monocyte Heterogeneity as Revealed by High-Dimensional Mass Cytometry. Arteriosclerosis, thrombosis, and vascular biology. 2019;39(1):25–36.

  • Cignarella A, Tedesco S, Cappellari R, Fadini GP. The continuum of monocyte phenotypes: experimental evidence and prognostic utility in assessing cardiovascular risk. J Leukoc Biol. 2018.

  • Hijdra D, Vorselaars AD, Grutters JC, Claessen AM, Rijkers GT. Phenotypic characterization of human intermediate monocytes. Front Immunol. 2013;4:339.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Investig. 2007;117(1):185–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukherjee R, Kanti Barman P, Kumar Thatoi P, Tripathy R, Kumar Das B, Ravindran B. Non-classical monocytes display inflammatory features: validation in Sepsis and systemic Lupus Erythematous. Sci Rep. 2015;5:13886.

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi C, Jia T, Mendez-Ferrer S, Hohl TM, Serbina NV, Lipuma L, et al. Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. Immunity. 2011;34(4):590–601.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zouggari Y, Ait-Oufella H, Bonnin P, Simon T, Sage AP, Guérin C, et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med. 2013;19(10):1273–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheiermann C, Kunisaki Y, Lucas D, Chow A, Jang JE, Zhang D, et al. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity. 2012;37(2):290–301.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zabel BA, Rott A, Butcher EC. Leukocyte chemoattractant receptors in human disease pathogenesis. Annu Rev Pathol. 2015;10:51–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coillard A, Segura E. Vivo differentiation of human monocytes. Front Immunol. 2019;10:1907.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 2007;204(5):1057–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saederup N, Cardona AE, Croft K, Mizutani M, Cotleur AC, Tsou CL, et al. Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS ONE. 2010;5(10):e13693.

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zigmond E, Varol C, Farache J, Elmaliah E, Satpathy AT, Friedlander G, et al. Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity. 2012;37(6):1076–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rivollier A, He J, Kole A, Valatas V, Kelsall BL. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J Exp Med. 2012;209(1):139–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Volume 332. New York, NY: Science; 2011. pp. 1284–8. 6035.


    Google Scholar
     

  • Egawa M, Mukai K, Yoshikawa S, Iki M, Mukaida N, Kawano Y, et al. Inflammatory monocytes recruited to allergic skin acquire an anti-inflammatory M2 phenotype via basophil-derived interleukin-4. Immunity. 2013;38(3):570–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jakubzick CV, Randolph GJ, Henson PM. Monocyte differentiation and antigen-presenting functions. Nat Rev Immunol. 2017;17(6):349–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu CP, Sun HT, Yang YJ, Cui Z, Wang J, Yu B, et al. ELP2 negatively regulates osteoblastic differentiation impaired by tumor necrosis factor α in MC3T3-E1 cells through STAT3 activation. J Cell Physiol. 2019;234(10):18075–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borgoni S, Kudryashova KS, Burka K, de Magalhães JP. Targeting immune dysfunction in aging. Ageing Res Rev. 2021;70:101410.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salminen A. Activation of immunosuppressive network in the aging process. Ageing Res Rev. 2020;57:100998.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santoro A, Bientinesi E, Monti D. Immunosenescence and inflammaging in the aging process: age-related diseases or longevity? Ageing Res Rev. 2021;71:101422.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Damasceno D, Teodosio C, van den Bossche WBL, Perez-Andres M, Arriba-Méndez S, Muñoz-Bellvis L, et al. Distribution of subsets of blood monocytic cells throughout life. J Allergy Clin Immunol. 2019;144(1):320–3e6.

    Article 
    PubMed 

    Google Scholar
     

  • Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007;128(1):92–105.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao Y, Fan Y, Li F, Hao Y, Kong Y, Chen C et al. Phenotypic and functional alterations of monocyte subsets with aging. Immunity & ageing: I & A. 2022;19(1):63.

  • Nyugen J, Agrawal S, Gollapudi S, Gupta S. Impaired functions of peripheral blood monocyte subpopulations in aged humans. J Clin Immunol. 2010;30(6):806–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewis ED, Wu D, Meydani SN. Age-associated alterations in immune function and inflammation. Prog Neuro-psychopharmacol Biol Psychiatry. 2022;118:110576.

    Article 
    CAS 

    Google Scholar
     

  • De Martinis M, Modesti M, Loreto MF, Quaglino D, Ginaldi L. Adhesion molecules on peripheral blood lymphocyte subpopulations in the elderly. Life Sci. 2000;68(2):139–51.

    Article 
    PubMed 

    Google Scholar
     

  • Yang J, Zhang L, Yu C, Yang XF, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2(1):1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maher AK, Burnham KL, Jones EM, Tan MMH, Saputil RC, Baillon L, et al. Transcriptional reprogramming from innate immune functions to a pro-thrombotic signature by monocytes in COVID-19. Nat Commun. 2022;13(1):7947.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vallania F, Zisman L, Macaubas C, Hung SC, Rajasekaran N, Mason S, et al. Multicohort Analysis identifies Monocyte Gene signatures to accurately monitor subset-specific changes in Human diseases. Front Immunol. 2021;12:659255.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell. 2012;11(5):867–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Löffler J, Sass FA, Filter S, Rose A, Ellinghaus A, Duda GN, et al. Compromised bone healing in aged rats is Associated with impaired M2 macrophage function. Front Immunol. 2019;10:2443.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bordoni V, Reina G, Orecchioni M, Furesi G, Thiele S, Gardin C, et al. Stimulation of bone formation by monocyte-activator functionalized graphene oxide in vivo. Nanoscale. 2019;11(41):19408–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vi L, Baht GS, Whetstone H, Ng A, Wei Q, Poon R, et al. Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J bone Mineral Research: Official J Am Soc Bone Mineral Res. 2015;30(6):1090–102.

    Article 
    CAS 

    Google Scholar
     

  • Vuoti E, Lehenkari P, Tuukkanen J, Glumoff V, Kylmäoja E. Osteoclastogenesis of human peripheral blood, bone marrow, and cord blood monocytes. Sci Rep. 2023;13(1):3763.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donati S, Ciuffi S, Palmini G, Brandi ML. Circulating miRNAs: a New Opportunity in Bone Fragility. Biomolecules. 2020;10(6).

  • Madel MB, Ibáñez L, Wakkach A, de Vries TJ, Teti A, Apparailly F, et al. Immune function and diversity of osteoclasts in normal and pathological conditions. Front Immunol. 2019;10:1408.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harvey N, Dennison E, Cooper C. Osteoporosis: impact on health and economics. Nat Rev Rheumatol. 2010;6(2):99–105.

    Article 
    PubMed 

    Google Scholar
     

  • Baht GS, Vi L, Alman BA. The role of the Immune cells in Fracture Healing. Curr Osteoporos Rep. 2018;16(2):138–45.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 2014;31(6):722–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, et al. Biomarkers of aging. Sci China Life Sci. 2023;66(5):893–1066.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farr JN, Khosla S. Cellular senescence in bone. Bone. 2019;121:121–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonewald LF. The amazing osteocyte. J bone Mineral Research: Official J Am Soc Bone Mineral Res. 2011;26(2):229–38.

    Article 
    CAS 

    Google Scholar
     

  • Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2006;17(12):1726–33.

  • Marie PJ. Bone cell senescence: mechanisms and perspectives. J bone Mineral Research: Official J Am Soc Bone Mineral Res. 2014;29(6):1311–21.

    Article 
    CAS 

    Google Scholar
     

  • Fuentes E, Fuentes M, Alarcón M, Palomo I. Immune System Dysfunction in the Elderly. Anais Da Academia Brasileira De Ciencias. 2017;89(1):285–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Min D, Nube V, Tao A, Yuan X, Williams PF, Brooks BA, et al. Monocyte phenotype as a predictive marker for wound healing in diabetes-related foot ulcers. J Diabetes Complicat. 2021;35(5):107889.

    Article 
    CAS 

    Google Scholar
     

  • Wang Z, Zhou Q, Liu H, Zhang J, Zhu Z, Wu J, et al. Association between Monocyte Count and Preoperative Deep venous thrombosis in older patients with hip fracture: a retrospective study. Clin Appl thrombosis/hemostasis: Official J Int Acad Clin Appl Thrombosis/Hemostasis. 2022;28:10760296221100806.


    Google Scholar
     

  • Seidler S, Zimmermann HW, Bartneck M, Trautwein C, Tacke F. Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol. 2010;11:30.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsukasaki M, Takayanagi H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol. 2019;19(10):626–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brassolatti P, Castro CA, Santos HLD, Simões IT, Almeida-Lopes L, Silva JVD, et al. Systemic and local inflammatory response after implantation of biomaterial in critical bone injuries. Acta Cirurgica Brasileira. 2023;38:e383823.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian A. Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Rep. 2017;6:87–100.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meinel L, Hofmann S, Betz O, Fajardo R, Merkle HP, Langer R, et al. Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials: comparison of adenovirus mediated gene transfer and protein delivery of BMP-2. Biomaterials. 2006;27(28):4993–5002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Q, Jin Y, Deng X, Liu H, Pang H, Shi P, et al. Second-harmonic generation microscopy for assessment of mesenchymal stem cell-seeded acellular dermal matrix in wound-healing. Biomaterials. 2015;53:659–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tevlin R, Seo EY, Marecic O, McArdle A, Tong X, Zimdahl B et al. Pharmacological rescue of diabetic skeletal stem cell niches. Sci Transl Med. 2017;9(372).

  • Franz S, Rammelt S, Scharnweber D, Simon JC. Immune responses to implants – a review of the implications for the design of immunomodulatory biomaterials. Biomaterials. 2011;32(28):6692–709.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fuchs AK, Syrovets T, Haas KA, Loos C, Musyanovych A, Mailänder V, et al. Carboxyl- and amino-functionalized polystyrene nanoparticles differentially affect the polarization profile of M1 and M2 macrophage subsets. Biomaterials. 2016;85:78–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eivazzadeh-Keihan R, Chenab KK, Taheri-Ledari R, Mosafer J, Hashemi SM, Mokhtarzadeh A et al. Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineering. Materials science & engineering C, Materials for biological applications. 2020;107:110267.

  • Zhao T, Chu Z, Ma J, Ouyang L. Immunomodulation Effect of Biomaterials on bone formation. J Funct Biomaterials. 2022;13(3).

  • Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol. 2012;13(11):1118–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gordon S. Targeting a monocyte subset to reduce inflammation. Circul Res. 2012;110(12):1546–8.

    Article 
    CAS 

    Google Scholar
     

  • Li X, Qu S, Ouyang Q, Qin F, Guo J, Qin M et al. A multifunctional composite nanoparticle with antibacterial activities, anti-inflammatory, and angiogenesis for diabetic wound healing. Int J Biol Macromol. 2024:129531.

  • Liu X, Liu Y, Zhou J, Yu X, Wan J, Wang J, et al. Porous collagen sponge loaded with large efficacy-potentiated exosome-mimicking nanovesicles for Diabetic skin Wound Healing. ACS biomaterials science & engineering; 2024.

  • Ma L, Li M, Komasa S, Hontsu S, Hashimoto Y, Okazaki J et al. Effect of Er:YAG Pulsed laser-deposited Hydroxyapatite Film on Titanium implants on M2 macrophage polarization in Vitro and Osteogenesis in vivo. Int J Mol Sci. 2023;25(1).

  • Li PL, Chen DF, Li XT, Hao RC, Zhao ZD, Li ZL, et al. Microgel-based carriers enhance skeletal stem cell reprogramming towards immunomodulatory phenotype in osteoarthritic therapy. Bioact Mater. 2024;34:204–20.

    CAS 
    PubMed 

    Google Scholar
     

  • Brown BN, Ratner BD, Goodman SB, Amar S, Badylak SF. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials. 2012;33(15):3792–802.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hotchkiss KM, Sowers KT, Olivares-Navarrete R. Novel in vitro comparative model of osteogenic and inflammatory cell response to dental implants. Dent Materials: Official Publication Acad Dent Mater. 2019;35(1):176–84.

    Article 
    CAS 

    Google Scholar
     

  • Stepanova M, Averianov I, Gofman I, Shevchenko N, Rubinstein A, Egorova T et al. Drug loaded 3D-Printed poly(ε-Caprolactone) scaffolds for local antibacterial or anti-inflammatory treatment in bone regeneration. Polymers. 2023;15(19).

  • Xiong S, Zhang Y, Zeng J, Zhou J, Liu S, Wei P, et al. DLP fabrication of HA scaffold with customized porous structures to regulate immune microenvironment and macrophage polarization for enhancing bone regeneration. Mater Today Bio. 2024;24:100929.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Description of Image

    Source link