Scientific Papers

Loss of Calponin 2 causes premature ovarian insufficiency in mice | Journal of Ovarian Research

Description of Image

  • Vaiarelli A, Cimadomo D, Ubaldi N, Rienzi L, Ubaldi FM. What is new in the management of poor ovarian response in IVF? Curr Opin Obstet Gynecol. 2018;30(3):155–62.

    Article 
    PubMed 

    Google Scholar
     

  • Podfigurna-Stopa A, Czyzyk A, Grymowicz M, Smolarczyk R, Katulski K, Czajkowski K, Meczekalski B. Premature ovarian insufficiency: the context of long-term effects. J Endocrinol Invest. 2016;39(9):983–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chon SJ, Umair Z, Yoon MS. Premature ovarian insufficiency: past, present, and future. Front Cell Dev Biol. 2021;9: 672890.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wear HM, McPike MJ, Watanabe KH. From primordial germ cells to primordial follicles: a review and visual representation of early ovarian development in mice. J Ovarian Res. 2016;9(1):36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saitou M, Yamaji M. Primordial germ cells in mice. Cold Spring Harb Perspect Biol. 2012;4(11):a008375.

  • Sun YC, Sun XF, Dyce PW, Shen W, Chen H. The role of germ cell loss during primordial follicle assembly: a review of current advances. Int J Biol Sci. 2017;13(4):449–57.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morohaku K, Hirao Y, Obata Y. Differentiation of mouse primordial germ cells into functional oocytes in Vitro. Ann Biomed Eng. 2017;45(7):1608–19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah JS, Sabouni R, Cayton Vaught KC, Owen CM, Albertini DF, Segars JH. Biomechanics and mechanical signaling in the ovary: a systematic review. J Assist Reprod Genet. 2018;35(7):1135–48.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagamatsu G, Shimamoto S, Hamazaki N, Nishimura Y, Hayashi K. Mechanical stress accompanied with nuclear rotation is involved in the dormant state of mouse oocytes. Sci Adv. 2019;5(6): eaav9960.

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Coelho Neto MA, Ludwin A, Borrell A, Benacerraf B, Dewailly D, da Silva Costa F, et al. Counting ovarian antral follicles by ultrasound: a practical guide. Ultrasound Obstet Gynecol. 2018;51(1):10–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng W, Zhang H, Liu K. The two classes of primordial follicles in the mouse ovary: their development, physiological functions and implications for future research. Mol Hum Reprod. 2014;20(4):286–92.

    Article 
    PubMed 

    Google Scholar
     

  • Haeberle JR. Calponin decreases the rate of cross-bridge cycling and increases maximum force production by smooth muscle myosin in an in vitro motility assay. J Biol Chem. 1994;269(17):12424–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Winder SJ, Walsh MP. Smooth muscle calponin. Inhibition of actomyosin MgATPase and regulation by phosphorylation. J Biol Chem. 1990;265(17):10148–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abe M, Takahashi K, Hiwada K. Effect of calponin on actin-activated myosin ATPase activity. J Biochem. 1990;108(5):835–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin JP, Zhang Z, Bautista JA. Isoform diversity, regulation, and functional adaptation of troponin and calponin. Crit Rev Eukaryot Gene Expr. 2008;18(2):93–124.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu R, Jin JP. Calponin isoforms CNN1, CNN2 and CNN3: regulators for actin cytoskeleton functions in smooth muscle and non-muscle cells. Gene. 2016;585(1):143–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nigam R, Triggle CR, Jin JP. h1- and h2-calponins are not essential for norepinephrine- or sodium fluoride-induced contraction of rat aortic smooth muscle. J Muscle Res Cell Motil. 1998;19(6):695–703.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng HZ, Wang H, Takahashi K, Jin JP. Double deletion of calponin 1 and calponin 2 in mice decreases systemic blood pressure with blunted length-tension response of aortic smooth muscle. J Mol Cell Cardiol. 2019;129:49–57.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Applegate D, Feng W, Green RS, Taubman MB. Cloning and expression of a novel acidic calponin isoform from rat aortic vascular smooth muscle. J Biol Chem. 1994;269(14):10683–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trabelsi-Terzidis H, Fattoum A, Represa A, Dessi F, Ben-Ari Y, der Terrossian E. Expression of an acidic isoform of calponin in rat brain: western blots on one- or two-dimensional gels and immunolocalization in cultured cells. Biochem J. 1995;306(Pt 1):211–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shibukawa Y, Yamazaki N, Kumasawa K, Daimon E, Tajiri M, Okada Y, et al. Calponin 3 regulates actin cytoskeleton rearrangement in trophoblastic cell fusion. Mol Biol Cell. 2010;21(22):3973–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flemming A, Huang QQ, Jin JP, Jumaa H, Herzog S. A conditional knockout mouse model reveals that Calponin-3 is dispensable for early B cell development. PLoS ONE. 2015;10(6): e0128385.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shibukawa Y, Yamazaki N, Daimon E, Wada Y. Rock-dependent calponin 3 phosphorylation regulates myoblast fusion. Exp Cell Res. 2013;319(5):633–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hossain MM, Hwang DY, Huang QQ, Sasaki Y, Jin JP. Developmentally regulated expression of calponin isoforms and the effect of h2-calponin on cell proliferation. Am J Physiol Cell Physiol. 2003;284(1):C156–167.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hossain MM, Crish JF, Eckert RL, Lin JJ, Jin JP. h2-Calponin is regulated by mechanical tension and modifies the function of actin cytoskeleton. J Biol Chem. 2005;280(51):42442–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hossain MM, Smith PG, Wu K, Jin JP. Cytoskeletal tension regulates both expression and degradation of h2-calponin in lung alveolar cells. Biochemistry. 2006;45(51):15670–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang J, Hu G, Hanai J, Yadlapalli G, Lin Y, Zhang B, et al. A critical role for calponin 2 in vascular development. J Biol Chem. 2006;281(10):6664–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang QQ, Hossain MM, Wu K, Parai K, Pope RM, Jin JP. Role of H2-calponin in regulating macrophage motility and phagocytosis. J Biol Chem. 2008;283(38):25887–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moazzem Hossain M, Wang X, Bergan RC, Jin JP. Diminished expression of h2-calponin in prostate cancer cells promotes cell proliferation, migration and the dependence of cell adhesion on substrate stiffness. FEBS Open Bio. 2014;4:627–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian A, Hsieh TB, Hossain MM, Lin JJ, Jin JP. A rapid degradation of calponin 2 is required for cytokinesis. Am J Physiol Cell Physiol. 2021;321(2):C355–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jensen MH, Morris EJ, Gallant CM, Morgan KG, Weitz DA, Moore JR. Mechanism of calponin stabilization of cross-linked actin networks. Biophys J. 2014;106(4):793–800.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hossain MM, Zhao G, Woo MS, Wang JH, Jin JP. Deletion of calponin 2 in mouse fibroblasts increases myosin II-dependent cell traction force. Biochemistry. 2016;55(43):6046–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsieh TB, Feng HZ, Jin JP. Deletion of calponin 2 reduces the formation of postoperative peritoneal adhesions. J Invest Surg. 2021;35:1–12.


    Google Scholar
     

  • Hsieh TB, Jin JP. Loss of calponin 2 causes age-progressive proteinuria in mice. Physiol Rep. 2022;10(18):e15370.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plazyo O, Sheng JJ, Jin JP. Downregulation of calponin 2 contributes to the quiescence of lung macrophages. Am J Physiol Cell Physiol. 2019;317(4):C749–61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang QQ, Hossain MM, Sun W, Xing L, Pope RM, Jin JP. Deletion of calponin 2 in macrophages attenuates the severity of inflammatory arthritis in mice. Am J Physiol Cell Physiol. 2016;311(4):C673–85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torrealday S, Kodaman P, Pal L. Premature ovarian insufficiency – an update on recent advances in understanding and management. F1000Res. 2017;6:2069.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duncan M, Cummings L, Chada K. Germ cell deficient (gcd) mouse as a model of premature ovarian failure. Biol Reprod. 1993;49(2):221–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jagarlamudi K, Reddy P, Adhikari D, Liu K. Genetically modified mouse models for premature ovarian failure (POF). Mol Cell Endocrinol. 2010;315(1–2):1–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koks S, Dogan S, Tuna BG, Gonzalez-Navarro H, Potter P, Vandenbroucke RE. Mouse models of ageing and their relevance to disease. Mech Ageing Dev. 2016;160:41–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaz B, El Mansouri F, Liu X, Taketo T. Premature ovarian insufficiency in the XO female mouse on the C57BL/6J genetic background. Mol Hum Reprod. 2020;26(9):678–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee EH, Han SE, Park MJ, Kim HJ, Kim HG, Kim CW, et al. Establishment of effective mouse model of premature ovarian failure considering treatment duration of Anticancer drugs and natural recovery time. J Menopausal Med. 2018;24(3):196–203.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Myers M, Britt KL, Wreford NG, Ebling FJ, Kerr JB. Methods for quantifying follicular numbers within the mouse ovary. Reproduction. 2004;127(5):569–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su W, Guan X, Zhang D, Sun M, Yang L, Yi F, et al. Occurrence of multi-oocyte follicles in aquaporin 8-deficient mice. Reprod Biol Endocrinol. 2013;11: 88.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perez-Sanz J, Arluzea J, Matorras R, Gonzalez-Santiago N, Bilbao J, Yeh N, et al. Increased number of multi-oocyte follicles (MOFs) in juvenile p27Kip1 mutant mice: potential role of granulosa cells. Hum Reprod. 2013;28(4):1023–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaytan F, Morales C, Manfredi-Lozano M, Tena-Sempere M. Generation of multi-oocyte follicles in the peripubertal rat ovary: link to the invasive capacity of granulosa cells? Fertil Steril. 2014;101(5):1467–76.

    Article 
    PubMed 

    Google Scholar
     

  • Jefferson W, Newbold R, Padilla-Banks E, Pepling M. Neonatal genistein treatment alters ovarian differentiation in the mouse: inhibition of oocyte nest breakdown and increased oocyte survival. Biol Reprod. 2006;74(1):161–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan C, Wang P, DeMayo J, DeMayo FJ, Elvin JA, Carino C, et al. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol. 2001;15(6):854–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu J, Gridley T. Notch2 is required in somatic cells for breakdown of ovarian germ-cell nests and formation of primordial follicles. BMC Biol. 2013;11: 13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar TR, Palapattu G, Wang P, Woodruff TK, Boime I, Byrne MC, Matzuk MM. Transgenic models to study gonadotropin function: the role of follicle-stimulating hormone in gonadal growth and tumorigenesis. Mol Endocrinol. 1999;13(6):851–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jefferson WN, Padilla-Banks E, Newbold RR. Disruption of the female reproductive system by the phytoestrogen genistein. Reprod Toxicol. 2007;23(3):308–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mazaud Guittot S, Guigon CJ, Coudouel N, Magre S. Consequences of fetal irradiation on follicle histogenesis and early follicle development in rat ovaries. Biol Reprod. 2006;75(5):749–59.

    Article 
    PubMed 

    Google Scholar
     

  • Galkin VE, Orlova A, Egelman EH. Actin filaments as tension sensors. Curr Biol. 2012;22(3):R96-101.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jokubkiene L, Sladkevicius P, Rovas L, Valentin L. Assessment of changes in volume and vascularity of the ovaries during the normal menstrual cycle using three-dimensional power doppler ultrasound. Hum Reprod. 2006;21(10):2661–8.

    Article 
    PubMed 

    Google Scholar
     

  • Cheng Y, Feng Y, Jansson L, Sato Y, Deguchi M, Kawamura K, Hsueh AJ. Actin polymerization-enhancing drugs promote ovarian follicle growth mediated by the Hippo signaling effector YAP. FASEB J. 2015;29(6):2423–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawashima I, Kawamura K. Regulation of follicle growth through hormonal factors and mechanical cues mediated by Hippo signaling pathway. Syst Biol Reprod Med. 2018;64(1):3–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun C, Yang X, Wang T, Cheng M, Han Y. Ovarian biomechanics: from health to disease. Front Oncol. 2021;11:744257.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bailoo JD, Voelkl B, Varholick J, Novak J, Murphy E, Rosso M, et al. Effects of weaning age and housing conditions on phenotypic differences in mice. Sci Rep. 2020;10(1):11684.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan L, Dietrich AK, Ziegler YS, Nardulli AM. 17beta-Estradiol alters oxidative damage and oxidative stress response protein expression in the mouse mammary gland. Mol Cell Endocrinol. 2016;426:11–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pedersen T, Peters H. Proposal for a classification of oocytes and follicles in the mouse ovary. J Reprod Fertil. 1968;17(3):555–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Description of Image

    Source link