Scientific Papers

Gut microbiome-metabolome interactions predict host condition | Microbiome

Description of Image

  • Bunyavanich S, Shen N, Grishin A, Wood R, Burks W, Dawson P, et al. Early-life gut microbiome composition and milk allergy resolution. J Allergy Clin Immunol. 2016;138(4):1122–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee KH, Guo J, Song Y, Ariff A, O’sullivan M, Hales B, et al. Dysfunctional gut microbiome networks in childhood IgE-mediated food allergy. Int J Mol Sci. 2021;22(4):2079.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fettweis JM, Serrano MG, Brooks JP, Edwards DJ, Girerd PH, Parikh HI, et al. The vaginal microbiome and preterm birth. Nat Med. 2019;25(6):1012–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michail S, Durbin M, Turner D, Griffiths AM, Mack DR, Hyams J, et al. Alterations in the gut microbiome of children with severe ulcerative colitis. Inflamm Bowel Dis. 2012;18(10):1799–808.

    Article 
    PubMed 

    Google Scholar
     

  • Goldberg MR, Mor H, Neriya DM, Magzal F, Muller E, Appel MY, et al. Microbial signature in IgE-mediated food allergies. Genome Med. 2020;12(1):1–18.

    Article 

    Google Scholar
     

  • Binyamin D, Werbner N, Nuriel-Ohayon M, Uzan A, Mor H, Abbas A, et al. The aging mouse microbiome has obesogenic characteristics. Genome Med. 2020;12(1):1–9.

    Article 

    Google Scholar
     

  • Hirschberg S, Gisevius B, Duscha A, Haghikia A. Implications of diet and the gut microbiome in neuroinflammatory and neurodegenerative diseases. Int J Mol Sci. 2019;20(12):3109.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inaba H, Amano A. Roles of oral bacteria in cardiovascular diseases–from molecular mechanisms to clinical cases: Implication of periodontal diseases in development of systemic diseases. J Pharmacol Sci. 2010;113(2):103–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xavier JB, Young VB, Skufca J, Ginty F, Testerman T, Pearson AT, et al. The cancer microbiome: distinguishing direct and indirect effects requires a systemic view. Trends Cancer. 2020;6(3):192–204.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porter CM, Shrestha E, Peiffer LB, Sfanos KS. The microbiome in prostate inflammation and prostate cancer. Prostate Cancer Prostatic Dis. 2018;21(3):345–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krajmalnik-Brown R, Lozupone C, Kang DW, Adams JB. Gut bacteria in children with autism spectrum disorders: challenges and promise of studying how a complex community influences a complex disease. Microb Ecol Health Dis. 2015;26(1):26914.

    PubMed 

    Google Scholar
     

  • McNab F, Mayer-Barber K, Sher A, Wack A, O’garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15(2):87–103.

  • Javier-DesLoges J, McKay RR, Swafford AD, Sepich-Poore GD, Knight R, Parsons JK. The microbiome and prostate cancer. Prostate Cancer Prostatic Dis. 2022;25(2):159–64.

    Article 
    PubMed 

    Google Scholar
     

  • Shoaie S, Ghaffari P, Kovatcheva-Datchary P, Mardinoglu A, Sen P, Pujos-Guillot E, et al. Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab. 2015;22(2):320–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jansma J, El Aidy S. Understanding the host-microbe interactions using metabolic modeling. Microbiome. 2021;9(1):1–14.

    Article 

    Google Scholar
     

  • Agus A, Clément K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut. 2021;70(6):1174–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • González-Sánchez P, DeNicola GM. The microbiome (s) and cancer: know thy neighbor (s). J Pathol. 2021;254(4):332–43.

    Article 
    PubMed 

    Google Scholar
     

  • Lamichhane S, Sen P, Dickens AM, Orešič M, Bertram HC. Gut metabolome meets microbiome: a methodological perspective to understand the relationship between host and microbe. Methods. 2018;149:3–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin-Gallausiaux C, Marinelli L, Blottière HM, Larraufie P, Lapaque N. SCFA: mechanisms and functional importance in the gut. Proc Nutr Soc. 2021;80(1):37–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo C, Huo YJ, Li Y, Han Y, Zhou D. Gut-brain axis: Focus on gut metabolites short-chain fatty acids. World J Clin Cases. 2022;10(6):1754.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dekkers KF, Sayols-Baixeras S, Baldanzi G, Nowak C, Hammar U, Nguyen D, et al. An online atlas of human plasma metabolite signatures of gut microbiome composition. Nat Commun. 2022;13(1):5370.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen L, Zhernakova DV, Kurilshikov A, Andreu-Sánchez S, Wang D, Augustijn HE, et al. Influence of the microbiome, diet and genetics on inter-individual variation in the human plasma metabolome. Nat Med. 2022;28(11):2333–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bar N, Korem T, Weissbrod O, Zeevi D, Rothschild D, Leviatan S, et al. A reference map of potential determinants for the human serum metabolome. Nature. 2020;588(7836):135–40.

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Malczewski AB, Navarro S, Coward JI, Ketheesan N. Microbiome-derived metabolome as a potential predictor of response to cancer immunotherapy. J Immunother Cancer. 2020;8(2):e001383. https://doi.org/10.1136/jitc-2020-001383.

  • Khajeh T, Reiman D, Morley R, Dai Y. Integrating microbiome and metabolome data for host disease prediction via deep neural networks. In: 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI). IEEE; 2021. p. 1–4.

  • Larsen PE, Dai Y. Metabolome of human gut microbiome is predictive of host dysbiosis. Gigascience. 2015;4(1):s13742-015.

    Article 

    Google Scholar
     

  • Le V, Quinn TP, Tran T, Venkatesh S. Deep in the bowel: highly interpretable neural encoder-decoder networks predict gut metabolites from gut microbiome. BMC Genomics. 2020;21(4):1–15.


    Google Scholar
     

  • Fioravanti D, Giarratano Y, Maggio V, Agostinelli C, Chierici M, Jurman G, et al. Phylogenetic convolutional neural networks in metagenomics. BMC Bioinformatics. 2018;19:1–13.

    Article 

    Google Scholar
     

  • Sharma D, Paterson AD, Xu W. TaxoNN: ensemble of neural networks on stratified microbiome data for disease prediction. Bioinformatics. 2020;36(17):4544–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reiman D, Metwally AA, Sun J, Dai Y. PopPhy-CNN: a phylogenetic tree embedded architecture for convolutional neural networks to predict host phenotype from metagenomic data. IEEE J Biomed Health Inform. 2020;24(10):2993–3001.

    Article 
    PubMed 

    Google Scholar
     

  • Shtossel O, Isakov H, Turjeman S, Koren O, Louzoun Y. Ordering taxa in image convolution networks improves microbiome-based machine learning accuracy. Gut Microbes. 2023;15(1):2224474.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar M, Ji B, Zengler K, Nielsen J. Modelling approaches for studying the microbiome. Nat Microbiol. 2019;4(8):1253–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sánchez B, Delgado S, Blanco-Míguez A, Lourenço A, Gueimonde M, Margolles A. Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res. 2017;61(1):1600240.

    Article 

    Google Scholar
     

  • Lee CY, Dillard LR, Papin JA, Arnold KB. New perspectives into the vaginal microbiome with systems biology. Trends in Microbiology. 2023;31(4):356-68.

  • Holmes E, Wilson ID, Nicholson JK. Metabolic phenotyping in health and disease. Cell. 2008;134(5):714–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eisner R, Stretch C, Eastman T, Xia J, Hau D, Damaraju S, et al. Learning to predict cancer-associated skeletal muscle wasting from 1H-NMR profiles of urinary metabolites. Metabolomics. 2011;7(1):25–34.

    Article 
    CAS 

    Google Scholar
     

  • Aggio RB, Ruggiero K, Villas-Bôas SG. Pathway Activity Profiling (PAPi): from the metabolite profile to the metabolic pathway activity. Bioinformatics. 2010;26(23):2969–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elmariah S, Farrell LA, Daher M, Shi X, Keyes MJ, Cain E Carolyn H an d Pomerantsev, et al. Metabolite profiles predict acute kidney injury and mortality in patients undergoing transcatheter aortic valve replacement. J Am Heart Assoc. 2016;5(3):e002712.

  • Sinclair AJ, Viant MR, Ball AK, Burdon MA, Walker EA, Stewart PM, et al. NMR-based metabolomic analysis of cerebrospinal fluid and serum in neurological diseases-a diagnostic tool? NMR Biomed Int J Devoted Dev Appl Magn Reson Vivo. 2010;23(2):123–32.

    CAS 

    Google Scholar
     

  • Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bjerrum JT, Nielsen OH, Hao F, Tang H, Nicholson JK, Wang Y, et al. Metabonomics in ulcerative colitis: diagnostics, biomarker identification, and insight into the pathophysiology. J Proteome Res. 2010;9(2):954–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dang CV. Links between metabolism and cancer. Genes Dev. 2012;26(9):877–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Needham BD, Adame MD, Serena G, Rose DR, Preston GM, Conrad MC, et al. Plasma and fecal metabolite profiles in autism spectrum disorder. Biol Psychiatry. 2021;89(5):451–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dorrestein PC, Mazmanian SK, Knight R. Finding the missing links among metabolites, microbes, and the host. Immunity. 2014;40(6):824–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun M, Wu W, Liu Z, Cong Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J Gastroenterol. 2017;52(1):1–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumari S, Stevens D, Kind T, Denkert C, Fiehn O. Applying in-silico retention index and mass spectra matching for identification of unknown metabolites in accurate mass GC-TOF mass spectrometry. Anal Chem. 2011;83(15):5895–902.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee R, Ptolemy AS, Niewczas L, Britz-McKibbin P. Integrative metabolomics for characterizing unknown low-abundance metabolites by capillary electrophoresis-mass spectrometry with computer simulations. Anal Chem. 2007;79(2):403–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beckonert O, Keun HC, Ebbels TMD, Bundy J, Holmes E, Lindon JC, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007;2(11):2692.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sud M, Fahy E, Cotter D, Azam K, Vadivelu I, Burant C, et al. Metabolomics Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 2016;44(D1):D463–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim R, Cabatbat JJT, Martin TLP, Kim H, Kim S, Sung J, et al. Large-scale metabolic interaction network of the mouse and human gut microbiota. Sci Data. 2020;7(1):1–8.


    Google Scholar
     

  • Dohlman AB, Shen X. Mapping the microbial interactome: statistical and experimental approaches for microbiome network inference. Exp Biol Med. 2019;244(6):445–58.

    Article 
    CAS 

    Google Scholar
     

  • Magnúsdóttir S, Thiele I. Modeling metabolism of the human gut microbiome. Curr Opin Biotechnol. 2018;51:90–6.

    Article 
    PubMed 

    Google Scholar
     

  • Larsen PE, Collart FR, Field D, Meyer F, Keegan KP, Henry CS, et al. Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset. Microb Inf Exp. 2011;1(1):1–11.


    Google Scholar
     

  • Noecker C, Eng A, Srinivasan S, Theriot CM, Young VB, Jansson JK, et al. Metabolic model-based integration of microbiome taxonomic and metabolomic profiles elucidates mechanistic links between ecological and metabolic variation. MSystems. 2016;1(1):e00013-15.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noecker C, Eng A, Muller E, Borenstein E. MIMOSA2: a metabolic network-based tool for inferring mechanism-supported relationships in microbiome-metabolome data. Bioinformatics. 2022;38(6):1615–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin X, Altman T, Rutherford E, West KA, Wu Y, Choi J, et al. A comparative evaluation of tools to predict metabolite profiles from microbiome sequencing data. Front Microbiol. 2020;11:3132.

    Article 

    Google Scholar
     

  • Mallick H, Franzosa EA, Mclver LJ, Banerjee S, Sirota-Madi A, Kostic AD, et al. Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences. Nat Commun. 2019;10(1):1–11.

    Article 

    Google Scholar
     

  • Ding DY, Li S, Narasimhan B, Tibshirani R. Cooperative learning for multiview analysis. Proc Natl Acad Sci. 2022;119(38):e2202113119.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mallick H, Porwal A, Saha S, Basak P, Svetnik V, Paul E. An integrated Bayesian framework for multi-omics prediction and classification. bioRxiv. 2022:2022–11.

  • Reiman D, Layden BT, Dai Y. MiMeNet: Exploring microbiome-metabolome relationships using neural networks. PLoS Comput Biol. 2021;17(5):e1009021.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang T, Wang XW, Lee-Sarwar KA, Litonjua AA, Weiss ST, Sun Y, et al. Predicting metabolomic profiles from microbial composition through neural ordinary differential equations. Nat Mach Intel. 2023;5(3):284–93.

    Article 

    Google Scholar
     

  • Tsukuda N, Yahagi K, Hara T, Watanabe Y, Matsumoto H, Mori H, et al. Key bacterial taxa and metabolic pathways affecting gut short-chain fatty acid profiles in early life. ISME J. 2021;15(9):2574–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salazar N, Dewulf EM, Neyrinck AM, Bindels LB, Cani PD, Mahillon J, et al. Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clin Nutr. 2015;34(3):501–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin YN, Yu QF, Fu N, Liu XW, Lu FG. Effects of four Bifidobacteria on obesity in high-fat diet induced rats. World J Gastroenterol. 2010;16(27):3394.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fukuda S, Toh H, Taylor TD, Ohno H, Hattori M. Acetate-producing bifidobacteria protect the host from enteropathogenic infection via carbohydrate transporters. Gut Microbes. 2012;3(5):449–54.

    Article 
    PubMed 

    Google Scholar
     

  • Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469(7331):543–7.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • González Hernández MA, Canfora EE, Jocken JWE, Blaak EE. The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients. 2019;11(8):1943.

    Article 
    PubMed Central 

    Google Scholar
     

  • Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019;51(4):600–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kostic AD, Gevers D, Siljander H, Vatanen T, Hyötyläinen T, Hämäläinen AM, et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe. 2015;17(2):260–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Org E, Blum Y, Kasela S, Mehrabian M, Kuusisto J, Kangas AJ, et al. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the 0METSIM cohort. Genome Biol. 2017;18(1):1–14.

    Article 

    Google Scholar
     

  • Muller E, Algavi YM, Borenstein E. A meta-analysis study of the robustness and universality of gut microbiome-metabolome associations. Microbiome. 2021;9(1):1–18.

    Article 

    Google Scholar
     

  • Biggs MB, Medlock GL, Kolling GL, Papin JA. Metabolic network modeling of microbial communities. Wiley Interdiscip Rev Syst Biol Med. 2015;7(5):317–34.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saa P, Urrutia A, Silva-Andrade C, Martín AJ, Garrido D. Modeling approaches for probing cross-feeding interactions in the human gut microbiome. Comput Struct Biotechnol J. 2022;20:79-89.

  • Corradini MG, Peleg M. The non-linear kinetics of Microbial inactivation and growth in foods. Modelling microorganisms in food. 2007;1:129-60.

  • Wang M, Wang H, Zheng H, Dewhurst R, Roehe R. A knowledge-driven network-based analytical framework for the identification of rumen metabolites. IEEE Trans NanoBioscience. 2020;19(3):518–26.

    Article 
    PubMed 

    Google Scholar
     

  • Wang M, Wang H, Zheng H, Dewhurst RJ, Roehe R. A heat diffusion multilayer network approach for the identification of functional biomarkers in rumen methane emissions. Methods. 2021;192:57–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sip A, Grajek W, Boyaval P. Enhancement of bacteriocin production by Carnobacterium divergens AS7 in the presence of a bacteriocin-sensitive strain Carnobacterium piscicola. Int J Food Microbiol. 1998;42(1–2):63–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daskin JH, Alford RA. Context-dependent symbioses and their potential roles in wildlife diseases. Proc R Soc B Biol Sci. 2012;279(1733):1457–65.

    Article 

    Google Scholar
     

  • Wilmanski T, Rappaport N, Earls JC, Magis AT, Manor O, Lovejoy J, et al. Blood metabolome predicts gut microbiome \(\alpha\)-diversity in humans. Nat Biotechnol. 2019;37(10):1217–28.

  • Muller E, Algavi YM, Borenstein E. The gut microbiome-metabolome dataset collection: a curated resource for integrative meta-analysis. NPJ Biofilms Microbiomes. 2022;8(1):1–7.

    Article 

    Google Scholar
     

  • Wang B, Yang Y, Xu X, Hanjalic A, Shen HT. Adversarial cross-modal retrieval. In: Proceedings of the 25th ACM international Conference on Multimedia. Mountain View: 2017. p. 154–162.

  • Guo W, Wang J, Wang S. Deep multimodal representation learning: a survey. IEEE Access. 2019;7:63373–94.

    Article 

    Google Scholar
     

  • Meir AY, Rinott E, Tsaban G, Zelicha H, Kaplan A, Rosen P, et al. Effect of green-Mediterranean diet on intrahepatic fat: the DIRECT PLUS randomised controlled trial. Gut. 2021;70(11):2085–95.

    Article 
    CAS 

    Google Scholar
     

  • He X, Parenti M, Grip T, Lönnerdal B, Timby N, Domellöf M, et al. Fecal microbiome and metabolome of infants fed bovine MFGM supplemented formula or standard formula with breast-fed infants as reference: a randomized controlled trial. Sci Rep. 2019;9(1):1–14.

    Article 

    Google Scholar
     

  • Jacobs JP, Goudarzi M, Singh N, Tong M, McHardy IH, Ruegger P, et al. A disease-associated microbial and metabolomics state in relatives of pediatric inflammatory bowel disease patients. Cell Mol Gastroenterol Hepatol. 2016;2(6):750–66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim M, Vogtmann E, Ahlquist DA, Devens ME, Kisiel JB, Taylor WR, et al. Fecal metabolomic signatures in colorectal adenoma patients are associated with gut microbiota and early events of colorectal cancer pathogenesis. MBio. 2020;11(1):e03186-19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poyet M, Groussin M, Gibbons SM, Avila-Pacheco J, Jiang X, Kearney SM, et al. A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research. Nat Med. 2019;25(9):1442–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erawijantari PP, Mizutani S, Shiroma H, Shiba S, Nakajima T, Sakamoto T, et al. Influence of gastrectomy for gastric cancer treatment on faecal microbiome and metabolome profiles. Gut. 2020;69(8):1404–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol. 2019;4(2):293–305.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mars RA, Yang Y, Ward T, Houtti M, Priya S, Lekatz HR, et al. Longitudinal multi-omics reveals subset-specific mechanisms underlying irritable bowel syndrome. Cell. 2020;182(6):1460–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Yang S, Li S, Zhao L, Hao Y, Qin J, et al. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut. 2020;69(12):2131–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yachida S, Mizutani S, Shiroma H, Shiba S, Nakajima T, Sakamoto T, et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med. 2019;25(6):968–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jasner Y, Belogolovski A, Ben-Itzhak M, Koren O, Louzoun Y. Microbiome preprocessing machine learning pipeline. Front Immunol. 2021;12:677870.

  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. J Mach Learn Res. 2011;12:2825–30.

  • Microsoft. Neural Netw Intell. 2021. https://github.com/microsoft/nni. Accessed 5 May 2022.

  • Hardoon DR, Szedmak S, Shawe-Taylor J. Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 2004;16(12):2639–64.

    Article 
    PubMed 

    Google Scholar
     

  • Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Description of Image

    Source link