Scientific Papers

COSMIC-based mutation database enhances identification efficiency of HLA-I immunopeptidome | Journal of Translational Medicine

Description of Image

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article 
    PubMed 

    Google Scholar
     

  • Mokdad AA, Singal AG, Marrero JA, Zhu H, Yopp AC. Vascular Invasion and Metastasis is Predictive of Outcome in Barcelona Clinic Liver Cancer Stage C Hepatocellular Carcinoma. J Natl Compr Canc Netw. 2017;15(2):197–204.

    Article 
    PubMed 

    Google Scholar
     

  • Tang H, Cao Y, Jian Y, Li X, Li J, Zhang W, et al. Conversion therapy with an immune checkpoint inhibitor and an antiangiogenic drug for advanced hepatocellular carcinoma: A review. Biosci Trends. 2022;16(2):130–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang W, Hu B, Han J, Wang Z, Ma G, Ye H, et al. Surgery After Conversion Therapy With PD-1 Inhibitors Plus Tyrosine Kinase Inhibitors Are Effective and Safe for Advanced Hepatocellular Carcinoma: A Pilot Study of Ten Patients. Front Oncol. 2021;11: 747950.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348(6230):62–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science. 2014;344(6184):641–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen F, Zou Z, Du J, Su S, Shao J, Meng F, et al. Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors. J Clin Invest. 2019;129(5):2056–70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamamoto TN, Kishton RJ, Restifo NP. Developing neoantigen-targeted T cell-based treatments for solid tumors. Nat Med. 2019;25(10):1488–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang T, Shi T, Zhang H, Hu J, Song Y, Wei J, et al. Tumor neoantigens: from basic research to clinical applications. J Hematol Oncol. 2019;12(1):93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Z, Ott PA, Wu CJ. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol. 2018;18(3):168–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lang F, Schrors B, Lower M, Tureci O, Sahin U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat Rev Drug Discov. 2022;21(4):261–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bassani-Sternberg M, Braunlein E, Klar R, Engleitner T, Sinitcyn P, Audehm S, et al. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat Commun. 2016;7:13404.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data. J Immunol. 2017;199(9):3360–8.

  • Bulik-Sullivan B, Busby J, Palmer CD, Davis MJ, Murphy T, Clark A, et al. Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification. Nat Biotechnol. 2018.

  • Wang W, Yuan T, Ma L, Zhu Y, Bao J, Zhao X, et al. Hepatobiliary Tumor Organoids Reveal HLA Class I Neoantigen Landscape and Antitumoral Activity of Neoantigen Peptide Enhanced with Immune Checkpoint Inhibitors. Adv Sci (Weinh). 2022;9(22): e2105810.

    Article 
    PubMed 

    Google Scholar
     

  • Qi YA, Maity TK, Cultraro CM, Misra V, Zhang X, Ade C, et al. Proteogenomic Analysis Unveils the HLA Class I-Presented Immunopeptidome in Melanoma and EGFR-Mutant Lung Adenocarcinoma. Mol Cell Proteomics. 2021;20: 100136.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar D, Bansal G, Narang A, Basak T, Abbas T, Dash D. Integrating transcriptome and proteome profiling: Strategies and applications. Proteomics. 2016;16(19):2533–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Q, Lou Y, Yang J, Wang J, Feng J, Zhao Y, et al. Integrated multiomic analysis reveals comprehensive tumour heterogeneity and novel immunophenotypic classification in hepatocellular carcinomas. Gut. 2019;68(11):2019–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loffler MW, Mohr C, Bichmann L, Freudenmann LK, Walzer M, Schroeder CM, et al. Multi-omics discovery of exome-derived neoantigens in hepatocellular carcinoma. Genome Med. 2019;11(1):28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yarchoan M, Hopkins A, Jaffee EM. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N Engl J Med. 2017;377(25):2500–1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garraway LA, Lander ES. Lessons from the cancer genome. Cell. 2013;153(1):17–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meienberg J, Bruggmann R, Oexle K, Matyas G. Clinical sequencing: is WGS the better WES? Hum Genet. 2016;135(3):359–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu L, Jiang J, Zhan M, Zhang H, Wang QT, Sun SN, et al. Targeting Neoantigens in Hepatocellular Carcinoma for Immunotherapy: A Futile Strategy? Hepatology. 2021;73(1):414–21.

    Article 
    PubMed 

    Google Scholar
     

  • Bouwmeester R, Gabriels R, Hulstaert N, Martens L, Degroeve S. DeepLC can predict retention times for peptides that carry as-yet unseen modifications. Nat Methods. 2021;18(11):1363–9.

    Article 
    PubMed 

    Google Scholar
     

  • UniProt C. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023;51(D1):D523–31.

    Article 

    Google Scholar
     

  • Ghandi M, Huang FW, Jane-Valbuena J, Kryukov GV, Lo CC, McDonald ER 3rd, et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature. 2019;569(7757):503–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25(11):1422–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019;47(D1):D941–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D, Nesvizhskii AI. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat Methods. 2017;14(5):513–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boegel S, Lower M, Bukur T, Sahin U, Castle JC. A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines. Oncoimmunology. 2014;3(8): e954893.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orenbuch R, Filip I, Comito D, Shaman J, Pe’er I, Rabadan R. arcasHLA: high-resolution HLA typing from RNAseq. Bioinformatics. 2020;36(1):33–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Zhang Z, Jiang S, Xu F, Tulum L, Li K, et al. Using transcriptomics, proteomics and phosphoproteomics as new approach methodology (NAM) to define biological responses for chemical safety assessment. Chemosphere. 2023;313: 137359.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andreatta M, Alvarez B, Nielsen M. GibbsCluster: unsupervised clustering and alignment of peptide sequences. Nucleic Acids Res. 2017;45(W1):W458–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burley SK, Bhikadiya C, Bi C, Bittrich S, Chao H, Chen L, et al. RCSB Protein Data Bank (RCSB.org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res. 2023;51(D1):D488-D508.

  • Zhou P, Jin B, Li H, Huang SY. HPEPDOCK: a web server for blind peptide-protein docking based on a hierarchical algorithm. Nucleic Acids Res. 2018;46(W1):W443–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021;30(1):70–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarkizova S, Klaeger S, Le PM, Li LW, Oliveira G, Keshishian H, et al. A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nat Biotechnol. 2020;38(2):199–209.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olsson N, Heberling ML, Zhang L, Jhunjhunwala S, Phung QT, Lin S, et al. An Integrated Genomic, Proteomic, and Immunopeptidomic Approach to Discover Treatment-Induced Neoantigens. Front Immunol. 2021;12: 662443.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Y, Liu J. The Role of Neoantigens in Cancer Immunotherapy. Front Oncol. 2021;11: 682325.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonte PE, Arribas YA, Merlotti A, Carrascal M, Zhang JV, Zueva E, et al. Single-cell RNA-seq-based proteogenomics identifies glioblastoma-specific transposable elements encoding HLA-I-presented peptides. Cell Rep. 2022;39(10): 110916.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aparicio B, Reparaz D, Ruiz M, Llopiz D, Silva L, Vercher E, et al. Identification of HLA class I-restricted immunogenic neoantigens in triple negative breast cancer. Front Immunol. 2022;13: 985886.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dimou A, Grewe P, Sidney J, Sette A, Norman PJ, Doebele RC. HLA Class I Binding of Mutant EGFR Peptides in NSCLC Is Associated With Improved Survival. J Thorac Oncol. 2021;16(1):104–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9(1):34.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marty R, Kaabinejadian S, Rossell D, Slifker MJ, van de Haar J, Engin HB, et al. MHC-I Genotype Restricts the Oncogenic Mutational Landscape. Cell. 2017;171(6):1272–83 e15.

  • Caron E, Kowalewski DJ, Chiek Koh C, Sturm T, Schuster H, Aebersold R. Analysis of Major Histocompatibility Complex (MHC) Immunopeptidomes Using Mass Spectrometry. Mol Cell Proteomics. 2015;14(12):3105–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sturm T, Sautter B, Worner TP, Stevanovic S, Rammensee HG, Planz O, et al. Mild Acid Elution and MHC Immunoaffinity Chromatography Reveal Similar Albeit Not Identical Profiles of the HLA Class I Immunopeptidome. J Proteome Res. 2021;20(1):289–304.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Newey A, Griffiths B, Michaux J, Pak HS, Stevenson BJ, Woolston A, et al. Immunopeptidomics of colorectal cancer organoids reveals a sparse HLA class I neoantigen landscape and no increase in neoantigens with interferon or MEK-inhibitor treatment. J Immunother Cancer. 2019;7(1):309.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu J, Zhao W, Zhou B, Su Z, Gu X, Zhou Z, et al. TSNAdb: A Database for Tumor-specific Neoantigens from Immunogenomics Data Analysis. Genomics Proteomics Bioinformatics. 2018;16(4):276–82.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 2019;47(D1):D339–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan X, Li D, Huang P, Jian X, Wan H, Wang G, et al. dbPepNeo: a manually curated database for human tumor neoantigen peptides. Database (Oxford). 2020;2020.

  • Umer HM, Audain E, Zhu Y, Pfeuffer J, Sachsenberg T, Lehtio J, et al. Generation of ENSEMBL-based proteogenomics databases boosts the identification of non-canonical peptides. Bioinformatics. 2022;38(5):1470–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doffe F, Carbonnier V, Tissier M, Leroy B, Martins I, Mattsson JSM, et al. Identification and functional characterization of new missense SNPs in the coding region of the TP53 gene. Cell Death Differ. 2021;28(5):1477–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol. 2015;33:169–200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol. 2006;24:419–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laumont CM, Vincent K, Hesnard L, Audemard E, Bonneil E, Laverdure JP, et al. Noncoding regions are the main source of targetable tumor-specific antigens. Sci Transl Med. 2018;10(470).

  • Kalaora S, Nagler A, Nejman D, Alon M, Barbolin C, Barnea E, et al. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature. 2021;592(7852):138–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Description of Image

    Source link