Scientific Papers

Subtropical coastal microbiome variations due to massive river runoff after a cyclonic event | Environmental Microbiome


  • Nichols WJ, Seminoff JA, Etnoyer PB. Function, and interconnectedness: a revolution in our understanding of marine ecosystems and ocean conservation. In: Handbook of Marine fisheries conservation and management. Oxford University Press; 2010. p. 49.

  • Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nat Rev Microbiol. 2007;5:782–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Falkowski PG, Fenchel T, Delong EF. The Microbial engines that drive earth’s biogeochemical cycles. Science. 2008;320:1034–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci. 2008;105:7774–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605.

    Article 
    PubMed 

    Google Scholar
     

  • Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.

    Article 
    PubMed 

    Google Scholar
     

  • Logares R, Deutschmann IM, Junger PC, Giner CR, Krabberød AK, Schmidt TSB, et al. Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome. 2020;8:55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zinger L, Amaral-Zettler LA, Fuhrman JA, Horner-Devine MC, Huse SM, Welch DBM, et al. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE. 2011;6:e24570.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghiglione J-F, Galand PE, Pommier T, Pedrós-Alió C, Maas EW, Bakker K, et al. Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc Natl Acad Sci. 2012;109:17633–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seymour JR, Seuront L, Mitchell JG. Microscale and small-scale temporal dynamics of a coastal planktonic microbial community. Mar Ecol Prog Ser. 2005;300:21–37.

    Article 

    Google Scholar
     

  • Lambert S, Tragin M, Lozano J-C, Ghiglione J-F, Vaulot D, Bouget F-Y, et al. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME J. 2019;13:388–401.

    Article 
    PubMed 

    Google Scholar
     

  • Caracciolo M, Rigaut-Jalabert F, Romac S, Mahé F, Forsans S, Gac J-P, et al. Seasonal dynamics of marine protist communities in tidally mixed coastal waters. Mol Ecol. 2022;31:3761–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Legrand C, Fridolfsson E, Bertos-Fortis M, Lindehoff E, Larsson P, Pinhassi J, et al. Interannual variability of phyto-bacterioplankton biomass and production in coastal and offshore waters of the Baltic Sea. Ambio. 2015;44:427–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Racault M-F, Sathyendranath S, Brewin RJW, Raitsos DE, Jackson T, Platt T. Impact of El Niño variability on oceanic phytoplankton. Front Mar Sci. 2017;4:133.

    Article 

    Google Scholar
     

  • Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-Devine MC. Drivers of bacterial β-diversity depend on spatial scale. Proc Natl Acad Sci. 2011;108:7850–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zoppini A, Ademollo N, Bensi M, Berto D, Bongiorni L, Campanelli A, et al. Impact of a river flood on marine water quality and planktonic microbial communities. Estuar Coast Shelf Sci. 2019;224:62–72.

    Article 
    CAS 

    Google Scholar
     

  • Hansford MR, Plink-Björklund P, Jones ER. Global quantitative analyses of river discharge variability and hydrograph shape with respect to climate types. Earth-Sci Rev. 2020;200:102977.

    Article 

    Google Scholar
     

  • Milliman JD, Farnsworth KL. River Discharge to the coastal ocean: a global synthesis. 1st ed. Cambridge: Cambridge University Press; 2011.

    Book 

    Google Scholar
     

  • Ibarbalz FM, Henry N, Brandão MC, Martini S, Busseni G, Byrne H, et al. Global trends in marine plankton diversity across kingdoms of life. Cell. 2019;179:1084-1097.e21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Longhurst A, Sathyendranath S, Platt T, Caverhill C. An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res. 1995;17:1245–71.

    Article 

    Google Scholar
     

  • Chavez FP, Messié M, Pennington JT. Marine primary production in relation to climate variability and change. Annu Rev Mar Sci. 2011;3:227–60.

    Article 

    Google Scholar
     

  • Ratan R, Venugopal V. Wet and dry spell characteristics of global tropical rainfall. Water Resour Res. 2013;49:3830–41.

    Article 

    Google Scholar
     

  • Alongi DM. Tropical marine ecology. Hoboken: Wiley-Blackwell; 2022.


    Google Scholar
     

  • Jiang H, Zipser EJ. Contribution of tropical cyclones to the global precipitation from eight seasons of TRMM data: regional, seasonal, and interannual variations. J Clim. 2010;23:1526–43.

    Article 

    Google Scholar
     

  • Kan J. Storm events restructured bacterial community and their biogeochemical potentials. J Geophys Res Biogeosci. 2018;123:2257–69.

    Article 
    CAS 

    Google Scholar
     

  • Mitchell AW, Bramley RGV, Johnson AKL. Export of nutrients and suspended sediment during a cyclone-mediated flood event in the Herbert River catchment, Australia. Mar Freshw Res. 1997;48:79–88.

    Article 
    CAS 

    Google Scholar
     

  • Herbeck LS, Unger D, Krumme U, Liu SM, Jennerjahn TC. Typhoon-induced precipitation impact on nutrient and suspended matter dynamics of a tropical estuary affected by human activities in Hainan, China. Estuar Coast Shelf Sci. 2011;93:375–88.

    Article 
    CAS 

    Google Scholar
     

  • Angly FE, Heath C, Morgan TC, Tonin H, Rich V, Schaffelke B, et al. Marine microbial communities of the Great Barrier Reef lagoon are influenced by riverine floodwaters and seasonal weather events. PeerJ. 2016;4:e1511.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen N, Krom MD, Wu Y, Yu D, Hong H. Storm induced estuarine turbidity maxima and controls on nutrient fluxes across river-estuary-coast continuum. Sci Total Environ. 2018;628–629:1108–20.

    Article 
    PubMed 

    Google Scholar
     

  • Subrahmanyam B, Rao KH, Srinivasa Rao N, Murty VSN, Sharp RJ. Influence of a tropical cyclone on Chlorophyll-a Concentration in the Arabian Sea: Chlorophyll-a concentration in the Arabian Sea. Geophys Res Lett. 2002;29:22-1–22-4.

    Article 

    Google Scholar
     

  • Byju P, Prasanna KS. Physical and biological response of the Arabian Sea to tropical cyclone Phyan and its implications. Mar Environ Res. 2011;71:325–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui Y, Liu Z, Shan Z, Shi D, Ding X, Lü H. A case study on the dynamics of phytoplankton blooms caused by tropical cyclones in the Southeastern Arabian Sea. Tellus Dyn Meteorol Oceanogr. 2022;74:318–32.

    Article 

    Google Scholar
     

  • Chang J, Chung C, Gong G. Influences of cyclones on chlorophyll a concentration and Synechococcus abundance in a subtropical western Pacific coastal ecosystem. Mar Ecol Prog Ser. 1996;140:199–205.

    Article 

    Google Scholar
     

  • McKinnon AD, Meekan MG, Carleton JH, Furnas MJ, Duggan S, Skirving W. Rapid changes in shelf waters and pelagic communities on the southern Northwest Shelf, Australia, following a tropical cyclone. Cont Shelf Res. 2003;23:93–111.

    Article 

    Google Scholar
     

  • Neveux J, Tenório MMB, Jacquet S, Torréton J-P, Douillet P, Ouillon S, et al. Chlorophylls and phycoerythrins as markers of environmental forcings including cyclone Erica effect (March 2003) on phytoplankton in the Southwest Lagoon of New Caledonia and oceanic adjacent area. Int J Oceanogr. 2009;2009:e232513.

    Article 

    Google Scholar
     

  • Huang S, Sherman A, Chen C, Jaffé PR. Tropical cyclone effects on water and sediment chemistry and the microbial community in estuarine ecosystems. Environ Pollut. 2021;286:117228.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pimm SL. The complexity and stability of ecosystems. Nature. 1984;307:321–6.

    Article 

    Google Scholar
     

  • Steichen JL, Labonté JM, Windham R, Hala D, Kaiser K, Setta S, et al. Microbial, physical, and chemical changes in Galveston bay following an extreme flooding event, Hurricane Harvey. Front Mar Sci. 2020;7:186.

    Article 

    Google Scholar
     

  • Bruyère O, Soulard B, Lemonnier H, Laugier T, Hubert M, Petton S, et al. Hydrodynamic and hydrological processes within a variety of coral reef lagoons: field observations during six cyclonic seasons in New Caledonia. Earth Syst Sci Data. 2022;14:5439–62.

    Article 

    Google Scholar
     

  • Terry JP, Kostaschuk RA, Wotling G. Features of tropical cyclone-induced flood peaks on Grande Terre, New Caledonia. Water Environ J. 2008;22:177–83.

    Article 

    Google Scholar
     

  • Ambatsian P, Fernex F, Bernat M, Parron C, Lecolle J. High metal inputs to closed seas: the New Caledonian lagoon. J Geochem Explor. 1997;59:59–74.

    Article 
    CAS 

    Google Scholar
     

  • Ouillon S, Douillet P, Lefebvre JP, Le Gendre R, Jouon A, Bonneton P, et al. Circulation and suspended sediment transport in a coral reef lagoon: the south-west lagoon of New Caledonia. Mar Pollut Bull. 2010;61:269–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torréton J-P, Rochelle-Newall E, Jouon A, Faure V, Jacquet S, Douillet P. Correspondence between the distribution of hydrodynamic time parameters and the distribution of biological and chemical variables in a semi-enclosed coral reef lagoon. Estuar Coast Shelf Sci. 2007;74:766–76.

    Article 

    Google Scholar
     

  • Jacquet S, Delesalle B, Torréton J-P, Blanchot J. Response of phytoplankton communities to increased anthropogenic influences (southwestern lagoon, New Caledonia). Mar Ecol Prog Ser. 2006;320:65–78.

    Article 
    CAS 

    Google Scholar
     

  • Le Borgne R, Douillet P, Fichez R, Torréton J-P. Hydrography and plankton temporal variabilities at different time scales in the southwest lagoon of New Caledonia: a review. Mar Pollut Bull. 2010;61:297–308.

    Article 
    PubMed 

    Google Scholar
     

  • Tenório MMB, Le Borgne R, Rodier M, Neveux J. The impact of terrigeneous inputs on the Bay of Ouinné (New Caledonia) phytoplankton communities: a spectrofluorometric and microscopic approach. Estuar Coast Shelf Sci. 2005;64:531–45.

    Article 

    Google Scholar
     

  • Thomas Y, Courties C, El Helwe Y, Herbland A, Lemonnier H. Spatial and temporal extension of eutrophication associated with shrimp farm wastewater discharges in the New Caledonia lagoon. Mar Pollut Bull. 2010;61:387–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tenório MMB, Dupouy C, Rodier M, Neveux J. Trichodesmium and other planktonic cyanobacteria in New Caledonian waters (SW tropical Pacific) during an El Niño episode. Aquat Microb Ecol. 2018;81:219–41.

    Article 

    Google Scholar
     

  • Beale DJ, Jones OAH, Bose U, Broadbent JA, Walsh TK, van de Kamp J, et al. Omics-based ecosurveillance for the assessment of ecosystem function, health, and resilience. Emerg Top Life Sci. 2022;6:185–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pelletier B. Geology of the New Caledonia region and its implications for the study of the New Caledonian biodiversity. IRD Nouméa. 2007; Compendium of Marine Species from New Caledonia. p. 19–32.

  • Juillot F, coll. Dynamique des métaux de la Mine au Lagon. Rapport Scientifique. Programme “Dynamique des métaux de la mine au lagon”: CNRT “Nickel & son environnement”; 2019.

  • Merrot P, Juillot F, Flipo L, Tharaud M, Viollier E, Noël V, et al. Bioavailability of chromium, nickel, iron and manganese in relation to their speciation in coastal sediments downstream of ultramafic catchments: a case study in New Caledonia. Chemosphere. 2022;302:134643.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Desclaux T, Lemonnier H, Genthon P, Soulard B, Le Gendre R. Suitability of a lumped rainfall–runoff model for flashy tropical watersheds in New Caledonia. Hydrol Sci J. 2018;63:1689–706.

    Article 

    Google Scholar
     

  • Dutheil C, Menkes C, Lengaigne M, Vialard J, Peltier A, Bador M, et al. Fine-scale rainfall over New Caledonia under climate change. Clim Dyn. 2021;56:87–108.

    Article 

    Google Scholar
     

  • Moron V, Barbero R, Robertson AW. Subseasonal-to-interannual variability of rainfall over New Caledonia (SW Pacific). Clim Dyn. 2016;46:2449–68.

    Article 

    Google Scholar
     

  • Dare RA, Davidson NE. Characteristics of tropical cyclones in the Australian region. Mon Weather Rev. 2004;132:3049–65.

    Article 

    Google Scholar
     

  • Agier C. Météo Nouvelle-Calédonie–Bilan du passage du cyclone tropical UESI du 10 au 12 février 2020 sur la Nouvelle-Calédonie. 2020. https://www.meteo.nc/en-savoir-plus/accueil/actualites/557-bilan-du-passage-du-cyclone-tropical-uesi-du-10-au-12-fevrier-2020-sur-la-nouvelle-caledonie#vie-et-trajectoire-du-phenomene. Accessed 6 Jul 2023.

  • Lalau N, Helleringer C, Soulard B, Gendre RL. Atlas 2011–2017 des apports hydriques à l’échelle du territoire calédonien. 2019; p. 59.

  • Holmes RM, Aminot A, Kérouel R, Hooker BA, Peterson BJ. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can J Fish Aquat Sci. 1999;56:1801–8.

    Article 
    CAS 

    Google Scholar
     

  • Truesdale VW, Smith CJ. The formation of molybdosilicic acids from mixed solutions of molybdate and silicate. Analyst. 1975;100:203–12.

    Article 
    CAS 

    Google Scholar
     

  • Truesdale VW, Smith CJ. The spectrophotometric characteristics of aqueous solutions of α- and β-molybdosilicic acids. Analyst. 1975;100:797–805.

    Article 
    CAS 

    Google Scholar
     

  • Hansen HP, Koroleff F. Determination of nutrients. In: Methods of seawater analysis. Wiley, New York; 1999. p. 159–228.

  • Oudot C, Montel Y. A high sensitivity method for the determination of nanomolar concentrations of Nitrate and Nitrite in seawater with a technicon autoanalyzer II. Mar Chem. 1988;24:239–52.

    Article 
    CAS 

    Google Scholar
     

  • Raimbault P, Slawyk G, Coste B, Fry J. Feasibility of using an automated colorimetric procedure for the determination of seawater nitrate in the 0 to 100 nM range: examples from field and culture. Mar Biol. 1990;104:347–51.

    Article 
    CAS 

    Google Scholar
     

  • Wood ED, Armstrong FAJ, Richards FA. Determination of nitrate in sea water by cadmium-copper reduction to nitrite. J Mar Biol Assoc U K. 1967;47:23–31.

    Article 
    CAS 

    Google Scholar
     

  • Raimbault P, Pouvesle W, Diaz F, Garcia N, Sempéré R. Wet-oxidation and automated colorimetry for simultaneous determination of organic carbon, nitrogen and phosphorus dissolved in seawater. Mar Chem. 1999;66:161–9.

    Article 
    CAS 

    Google Scholar
     

  • Dupouy C, Röttgers R, Tedetti M, Frouin R, Lantoine F, Rodier M, et al. Impact of contrasted weather conditions on CDOM absorption/fluorescence and biogeochemistry in the Eastern Lagoon of New Caledonia. Front Earth Sci. 2020;8:54.

    Article 

    Google Scholar
     

  • Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr. 2008;53:955–69.

    Article 

    Google Scholar
     

  • Hansen AM, Kraus TEC, Pellerin BA, Fleck JA, Downing BD, Bergamaschi BA. Optical properties of dissolved organic matter (DOM): effects of biological and photolytic degradation. Limnol Oceanogr. 2016;61:1015–32.

    Article 

    Google Scholar
     

  • Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond JM, Parlanti E. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org Geochem. 2009;40:706–19.

    Article 
    CAS 

    Google Scholar
     

  • Zsolnay A, Baigar E, Jimenez M, Steinweg B, Saccomandi F. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere. 1999;38:45–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taberlet P, Coissac E, Hajibabaei M, Rieseberg LH. Environmental DNA. Mol Ecol. 2012;21:1789–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaither MR, DiBattista JD, Leray M, von der Heyden S. Metabarcoding the marine environment: from single species to biogeographic patterns. Environ DNA. 2022;4:3–8.

    Article 

    Google Scholar
     

  • Ruppert KM, Kline RJ, Rahman MS. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob Ecol Conserv. 2019;17:e00547.


    Google Scholar
     

  • Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner H-W, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol. 2010;19:21–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pawlowski J, Audic S, Adl S, Bass D, Belbahri L, Berney C, et al. CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol. 2012;10:e1001419.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hugerth LW, Muller EEL, Hu YOO, Lebrun LAM, Roume H, Lundin D, et al. Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia. PLoS ONE. 2014;9:e95567.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramond P, Sourisseau M, Simon N, Romac S, Schmitt S, Rigaut-Jalabert F, et al. Coupling between taxonomic and functional diversity in protistan coastal communities. Environ Microbiol. 2019;21:730–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olesen SW, Duvallet C, Alm EJ. dbOTU3: a new implementation of distribution-based OTU calling. PLoS ONE. 2017;12:e0176335.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKnight DT, Huerlimann R, Bower DS, Schwarzkopf L, Alford RA, Zenger KR. microDecon: a highly accurate read-subtraction tool for the post-sequencing removal of contamination in metabarcoding studies. Environ DNA. 2019;1:14–25.

    Article 

    Google Scholar
     

  • Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The protist ribosomal reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:D597-604.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paulson JN, Stine OC, Bravo HC, Pop M. Robust methods for differential abundance analysis in marker gene surveys. Nat Methods. 2013;10:1200–2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhan A, MacIsaac HJ. Rare biosphere exploration using high-throughput sequencing: research progress and perspectives. Conserv Genet. 2015;16:513–22.

    Article 

    Google Scholar
     

  • Ramond P, Siano R, Sourisseau M. Functional traits of marine protists. SEANOE. 2018.

  • Lazure P, Dumas F. An external–internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv Water Resour. 2008;31:233–50.

    Article 

    Google Scholar
     

  • Blumberg AF, Mellor GL. A description of a three-dimensional coastal ocean circulation model. In: Heaps NS, editor. Coastal and Estuarine sciences. Washington, D. C.: American Geophysical Union; 1987. p. 1–16.


    Google Scholar
     

  • Debreu L, Vouland C, Blayo E. AGRIF: adaptive grid refinement in Fortran. Comput Geosci. 2008;34:8–13.

    Article 

    Google Scholar
     

  • Carrère L, Lyard F, Cancet M, Roblou L, Guillot A. FES 2012: a new tidal model taking advantage of nearly 20 years of altimetry measurements. 2012; p. 22.

  • Lellouche J-M, Greiner E, Le Galloudec O, Garric G, Regnier C, Drevillon M, et al. Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1/12° high-resolution system. Ocean Sci. 2018;14:1093–126.

    Article 

    Google Scholar
     

  • Luyten PJ, De Mulder T. A module representing surfaces fluxes of momentum and heat. In: MUMM’s contribution to MAST-0050-C: management unit of the mathematical models of the North Sea and Scheldt Estuary; 1992.

  • Charnock H. Wind stress on a water surface. Q J R Meteorol Soc. 1955;81:639–40.

    Article 

    Google Scholar
     

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, et al. The ERA5 global reanalysis. Q J R Meteorol Soc. 2020;146:1999–2049.

    Article 

    Google Scholar
     

  • R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2022.

  • De Cáceres M, Coll L, Legendre P, Allen RB, Wiser SK, Fortin M-J, et al. Trajectory analysis in community ecology. Ecol Monogr. 2019;89:e01350.

    Article 

    Google Scholar
     

  • Kaci A, Petit F, Fournier M, Cécillon S, Boust D, Lesueur P, et al. Diversity of active microbial communities subjected to long-term exposure to chemical contaminants along a 40-year-old sediment core. Environ Sci Pollut Res. 2016;23:4095–110.

    Article 
    CAS 

    Google Scholar
     

  • Loutet SA, Chan ACK, Kobylarz MJ, Verstraete MM, Pfaffen S, Ye B, et al. The Fate of intracellular metal ions in microbes. In: Nriagu JO, Skaar EP, editors., et al., Trace metals and infectious diseases. Cambridge: MIT Press; 2015.


    Google Scholar
     

  • Nelson CE, Wear EK. Microbial diversity and the lability of dissolved organic carbon. Proc Natl Acad Sci. 2014;111:7166–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Li J, Li H, Wang L, Zhou Y, Li S, et al. Environmental DNA metabarcoding reveals the influence of human activities on microeukaryotic plankton along the Chinese coastline. Water Res. 2023;233:119730.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Twining BS, Baines SB. The trace metal composition of marine phytoplankton. Annu Rev Mar Sci. 2013;5:191–215.

    Article 

    Google Scholar
     

  • Madoni P, Romeo MG. Acute toxicity of heavy metals towards freshwater ciliated protists. Environ Pollut. 2006;141:1–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miazek K, Iwanek W, Remacle C, Richel A, Goffin D. Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: a review. Int J Mol Sci. 2015;16:23929–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tripathi BN, Gaur JP. Physiological behavior of Scenedesmus sp. during exposure to elevated levels of Cu and Zn and after withdrawal of metal stress. Protoplasma. 2006;229:1–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vacelet E, Arnoux A, Thomassin BA, Travers M. Influence of freshwater and terrigenous material on nutrients, bacteria and phytoplankton in a high island lagoon: Mayotte, Comoro Archipelago. Indian Ocean Hydrobiol. 1998;380:165–78.

    Article 
    CAS 

    Google Scholar
     

  • Furnas M, Mitchell A, Skuza M, Brodie J. In the other 90%: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon. Mar Pollut Bull. 2005;51:253–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Charpy L, Rodier M, Fournier J, Langlade M-J, Gaertner-Mazouni N. Physical and chemical control of the phytoplankton of Ahe lagoon. French Polynesia Mar Pollut Bull. 2012;65:471–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jacquet S. Impact des apports en nutriments sur le réseau trophique planctonique du lagon sud-ouest de Nouvelle-Calédonie. Ph.D. Thesis. Université Pierre et Marie Curie—Paris VI; 2005.

  • Cox EF, Ribes M, Iii RAK. Temporal and spatial scaling of planktonic responses to nutrient inputs into a subtropical embayment. Mar Ecol Prog Ser. 2006;324:19–35.

    Article 
    CAS 

    Google Scholar
     

  • Ekwu AO, Sikoki FD. Phytoplankton diversity in the Cross River Estuary of Nigeria. J Appl Sci Environ Manag. 2006;10:89–95.


    Google Scholar
     

  • Cheung MK, Au CH, Chu KH, Kwan HS, Wong CK. Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454 pyrosequencing. ISME J. 2010;4:1053–9.

    Article 
    PubMed 

    Google Scholar
     

  • Gutiérrez-Rodríguez A, Lopes dos Santos A, Safi K, Probert I, Not F, Fernández D, et al. Planktonic protist diversity across contrasting Subtropical and Subantarctic waters of the southwest Pacific. Prog Oceanogr. 2022;206:102809.

    Article 

    Google Scholar
     

  • Borbee EM, Ayu IP, Carvalho P, Restiana E, Setiawan F, Subhan B, et al. Rubble fields shape planktonic protist communities in Indonesia at a local scale. J Eukaryot Microbiol. 2022;70:e12954.

    Article 
    PubMed 

    Google Scholar
     

  • Weinbauer MG, Kerros M-E, Motegi C, Wilhartitz IC, Rassoulzadegan F, Torréton J-P, et al. Bacterial community composition and potential controlling mechanisms along a trophic gradient in a barrier reef system. Aquat Microb Ecol. 2010;60:15–28.

    Article 

    Google Scholar
     

  • Eiler A, Hayakawa DH, Rappé MS. Non-random assembly of bacterioplankton communities in the Subtropical North Pacific Ocean. Front Microbiol. 2011;2:140.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bryant JA, Aylward FO, Eppley JM, Karl DM, Church MJ, DeLong EF. Wind and sunlight shape microbial diversity in surface waters of the North Pacific Subtropical Gyre. ISME J. 2016;10:1308–22.

    Article 
    PubMed 

    Google Scholar
     

  • Pfreundt U, Van Wambeke F, Caffin M, Bonnet S, Hess WR. Succession within the prokaryotic communities during the VAHINE mesocosms experiment in the New Caledonia lagoon. Biogeosciences. 2016;13:2319–37.

    Article 
    CAS 

    Google Scholar
     

  • Cleary DFR, Polónia ARM, Becking LE, de Voogd NJ, Purwanto, Gomes H, et al. Compositional analysis of bacterial communities in seawater, sediment, and sponges in the Misool coral reef system, Indonesia. Mar Biodivers. 2018;48:1889–901.

    Article 

    Google Scholar
     

  • Suzuki S, Kaneko R, Kodama T, Hashihama F, Suwa S, Tanita I, et al. Comparison of community structures between particle-associated and free-living prokaryotes in tropical and subtropical Pacific Ocean surface waters. J Oceanogr. 2017;73:383–95.

    Article 
    CAS 

    Google Scholar
     

  • Bertrand JC, Caumette P, Lebaron P, Matheron R, Normand P. Écologie microbienne: microbiologie des milieux naturels et anthropisés. Pau: Presses universitaires de Pau et des Pays de l ’Adour; 2011.


    Google Scholar
     

  • Garcia N, Raimbault P, Sandroni V. Seasonal nitrogen fixation and primary production in the Southwest Pacific: nanoplankton diazotrophy and transfer of nitrogen to picoplankton organisms. Mar Ecol Prog Ser. 2007;343:25–33.

    Article 
    CAS 

    Google Scholar
     

  • Rodier M, Le Borgne R. Population dynamics and environmental conditions affecting Trichodesmium spp. (filamentous cyanobacteria) blooms in the south–west lagoon of New Caledonia. J Exp Mar Biol Ecol. 2008;358:20–32.

    Article 

    Google Scholar
     

  • Saulia E, Benavides M, Henke B, Turk-Kubo K, Cooperguard H, Grosso O, et al. Seasonal shifts in diazotrophs players: patterns observed over a two-year time series in the New Caledonian Lagoon (Western Tropical South Pacific Ocean). Front Mar Sci. 2020;7:581755.

    Article 

    Google Scholar
     

  • Delmont TO, Quince C, Shaiber A, Esen ÖC, Lee ST, Rappé MS, et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat Microbiol. 2018;3:804–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faure V, Pinazo C, Torréton J-P, Jacquet S. Modelling the spatial and temporal variability of the SW lagoon of New Caledonia I: a new biogeochemical model based on microbial loop recycling. Mar Pollut Bull. 2010;61:465–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pagano M, Sagarra P-B, Champalbert G, Bouvy M, Dupuy C, Thomas Y, et al. Metazooplankton communities in the Ahe atoll lagoon (Tuamotu Archipelago, French Polynesia): spatiotemporal variations and trophic relationships. Mar Pollut Bull. 2012;65:538–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sweet MJ, Croquer A, Bythell JC. Temporal and spatial patterns in waterborne bacterial communities of an island reef system. Aquat Microb Ecol. 2010;61:1–11.

    Article 

    Google Scholar
     

  • Frade PR, Glasl B, Matthews SA, Mellin C, Serrão EA, Wolfe K, et al. Spatial patterns of microbial communities across surface waters of the Great Barrier Reef. Commun Biol. 2020;3:1–14.

    Article 

    Google Scholar
     

  • Cloern JE, Jassby AD. Drivers of change in estuarine-coastal ecosystems: Discoveries from four decades of study in San Francisco Bay. Rev Geophys. 2012;50:1–33.

    Article 

    Google Scholar
     

  • Balzano S, Abs E, Leterme SC. Protist diversity along a salinity gradient in a coastal lagoon. Aquat Microb Ecol. 2015;74:263–77.

    Article 

    Google Scholar
     

  • Winder M, Carstensen J, Galloway AWE, Jakobsen HH, Cloern JE. The land–sea interface: a source of high-quality phytoplankton to support secondary production. Limnol Oceanogr. 2017;62:S258–71.

    Article 

    Google Scholar
     

  • Nelson CE, Alldredge AL, McCliment EA, Amaral-Zettler LA, Carlson CA. Depleted dissolved organic carbon and distinct bacterial communities in the water column of a rapid-flushing coral reef ecosystem. ISME J. 2011;5:1374–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martias C. Dynamique de la matière organique dissoute colorée et fluorescente en zone lagonaire tropicale dans le Pacifique Sud (Nouvelle Calédonie): influences climatiques et anthropogéniques. These de doctorat. Aix-Marseille; 2018.

  • Ringuet S, Mackenzie FT. Controls on nutrient and phytoplankton dynamics during normal flow and storm runoff conditions, southern Kaneohe Bay, Hawaii. Estuaries. 2005;28:327–37.

    Article 
    CAS 

    Google Scholar
     

  • Douillet P, Ouillon S, Cordier E. A numerical model for fine suspended sediment transport in the southwest lagoon of New Caledonia. Coral Reefs. 2001;20:361–72.

    Article 

    Google Scholar
     

  • Jouon A, Douillet P, Ouillon S, Fraunié P. Calculations of hydrodynamic time parameters in a semi-opened coastal zone using a 3D hydrodynamic model. Contin Shelf Res. 2006;26:1395–415.

    Article 

    Google Scholar
     

  • Mari X, Rochelle-Newall E, Torréton J-P, Pringault O, Jouon A, Migon C. Water residence time: a regulatory factor of the DOM to POM transfer efficiency. Limnol Oceanogr. 2007;52:808–19.

    Article 
    CAS 

    Google Scholar
     

  • Thomas Y, Garen P, Courties C, Charpy L. Spatial and temporal variability of the pico- and nanophytoplankton and bacterioplankton in a deep Polynesian atoll lagoon. Aquat Microb Ecol. 2010;59:89–101.

    Article 

    Google Scholar
     

  • Jeffries TC, Ostrowski M, Williams RB, Xie C, Jensen RM, Grzymski JJ, et al. Spatially extensive microbial biogeography of the Indian Ocean provides insights into the unique community structure of a pristine coral atoll. Sci Rep. 2015;5:15383.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leichter JJ, Alldredge AL, Bernardi G, Brooks AJ, Carlson CA, Carpenter RC, et al. Biological and Physical Interactions on a Tropical Island Coral Reef: transport and Retention Processes on Moorea, French Polynesia. Oceanography. 2013;26:52–63.

    Article 

    Google Scholar
     

  • Fichez R, Breau L, Chevillon C, Chifflet S, Douillet P, Faure V, et al. Origine, transport et devenir des apports naturels et anthropiques dans le lagon sud-ouest de Nouvelle-Calédonie. J Soc Océan. 2008. https://journals.openedition.org/jso/5072. Accessed 19 Sep 2022.

  • Xu G, Yang EJ, Xu H. Environmental drivers of heterogeneity in the trophic-functional structure of protozoan communities during an annual cycle in a coastal ecosystem. Mar Pollut Bull. 2017;121:400–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alongi DM, McKinnon AD. The cycling and fate of terrestrially-derived sediments and nutrients in the coastal zone of the Great Barrier Reef shelf. Mar Pollut Bull. 2005;51:239–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Devlin MJ, Brodie J. Terrestrial discharge into the Great Barrier Reef Lagoon: nutrient behavior in coastal waters. Mar Pollut Bull. 2005;51:9–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fuhrman JA, Cram JA, Needham DM. Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol. 2015;13:133–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev. 2011;75:14–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu S, Sun Y, Zhao X, Wang L, Ding A, Zhao X. Sequencing insights into microbial communities in the water and sediments of Fenghe river, China. Arch Environ Contam Toxicol. 2016;71:122–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weinbauer M, Motegi C, Migon C, Mari X. Bacterial abundance, growth and community composition in oligotrophic, metal-rich running waters of Southern New Caledonia. 2022.

  • Varona-Cordero F, Gutiérrez-Mendieta FJ, Meave del Castillo ME. Phytoplankton assemblages in two compartmentalized coastal tropical lagoons (Carretas-Pereyra and Chantuto-Panzacola, Mexico). J Plankton Res. 2010;32:1283–99.

    Article 
    CAS 

    Google Scholar
     

  • Berger H. Monograph of the oxytrichidae (Ciliophora, Hypotrichia). Berlin: Springer; 2012.


    Google Scholar
     

  • Zhang X, Liao X, Huang L, Shan Q, Hu A, Yan D, et al. Soil profile rather than reclamation time drives the mudflat soil microbial community in the wheat-maize rotation system of Nantong, China. J Soils Sediments. 2021;21:1672–87.

    Article 

    Google Scholar
     

  • Lan J, Wang S, Wang J, Qi X, Long Q, Huang M. The shift of soil bacterial community after afforestation influence soil organic carbon and aggregate stability in Karst Region. Front Microbiol. 2022;13:901126.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li W, Siddique MS, Liu M, Graham N, Yu W. The migration and microbiological degradation of dissolved organic matter in riparian soils. Water Res. 2022;224:119080.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tuo P, Ren J, Hao C, Zhang X, Li R. Decades of weathering improves coal refuse biogeochemical properties by altering dissolved organic matter and microbial communities: a case study of a coal refuse pile. Land Degrad Dev. 2022;34:1708–24.

    Article 

    Google Scholar
     

  • Devlin M, Waterhouse J, Taylor J, Brodie J. Flood plumes in the Great Barrier Reef: spatial and temporal patterns in composition and distribution. the Great Barrier Reef Marine Park Authority. National Library of Australia Cataloguing-in-Publication data; 2001.

  • Berdjeb L, Parada A, Needham DM, Fuhrman JA. Short-term dynamics and interactions of marine protist communities during the spring–summer transition. ISME J. 2018;12:1907–17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bissett A, Bowman JP, Burke CM. Flavobacterial response to organic pollution. Aquat Microb Ecol. 2008;51:31–43.

    Article 

    Google Scholar
     

  • Doherty M, Yager PL, Moran MA, Coles VJ, Fortunato CS, Krusche AV, et al. Bacterial biogeography across the Amazon River-ocean continuum. Front Microbiol. 2017;8:882.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biard T. Diversity and ecology of Radiolaria in modern oceans. Environ Microbiol. 2022;24:2179–200.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gómez F, López-García P, Moreira D. Molecular phylogeny of the ocelloid-bearing dinoflagellates erythropsidinium and warnowia (Warnowiaceae, Dinophyceae). J Eukaryot Microbiol. 2009;56:440–5.

    Article 
    PubMed 

    Google Scholar
     

  • Zamudio ME, Licea S, Luna R. Relative abundance and distribution of unarmoured dinoflagellate species in the Southern Gulf of Mexico (2005–2010). In: Lewis JM, Marret F, Bradley LR, editors. Biological and geological perspectives of dinoflagellates. London: Geological Society of London; 2013. p. 233–8.

    Chapter 

    Google Scholar
     

  • Bainbridge ZT, Wolanski E, Álvarez-Romero JG, Lewis SE, Brodie JE. Fine sediment and nutrient dynamics related to particle size and floc formation in a Burdekin River flood plume, Australia. Mar Pollut Bull. 2012;65:236–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bharathi MD, Sarma VVSS, Ramaneswari K. Intra-annual variations in phytoplankton biomass and its composition in the tropical estuary: Influence of river discharge. Mar Pollut Bull. 2018;129:14–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brodie JE, Kroon FJ, Schaffelke B, Wolanski EC, Lewis SE, Devlin MJ, et al. Terrestrial pollutant runoff to the Great Barrier Reef: an update of issues, priorities and management responses. Mar Pollut Bull. 2012;65:81–100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zielinski BL, Allen AE, Carpenter EJ, Coles VJ, Crump BC, Doherty M, et al. Patterns of transcript abundance of eukaryotic biogeochemically-relevant genes in the Amazon River Plume. PLoS ONE. 2016;11:e0160929.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao X, Chen H, Gu B, Jeppesen E, Xue Y, Yang J. Particulate organic matter as causative factor to eutrophication of subtropical deep freshwater: role of typhoon (tropical cyclone) in the nutrient cycling. Water Res. 2021;188:116470.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simon HM, Smith MW, Herfort L. Metagenomic insights into particles and their associated microbiota in a coastal margin ecosystem. Front Microbiol. 2014;5:466.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Margalef R. On certain unifying principles in ecology. Am Nat. 1963;97:357–74.

    Article 

    Google Scholar
     

  • Reynolds CS. The response of phytoplankton communities to changing lake environments. Swiss J Hydrol. 1987;49:220–36.

    Article 

    Google Scholar
     

  • Bochdansky AB, Clouse MA, Herndl GJ. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J. 2017;11:362–73.

    Article 
    PubMed 

    Google Scholar
     

  • Li S, Fang J, Zhu X, Spencer RGM, Álvarez-Salgado XA, Deng Y, et al. Properties of sediment dissolved organic matter respond to eutrophication and interact with bacterial communities in a plateau lake. Environ Pollut. 2022;301:118996.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blanco AC, Nadaoka K, Yamamoto T. Planktonic and benthic microalgal community composition as indicators of terrestrial influence on a fringing reef in Ishigaki Island Southwest Japan. Mar Environ Res. 2008;66:520–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chacko N. Chlorophyll bloom in response to tropical cyclone Hudhud in the Bay of Bengal: bio-argo subsurface observations. Deep Sea Res Part Oceanogr Res Pap. 2017;124:66–72.

    Article 
    CAS 

    Google Scholar
     

  • Crump BC, Armbrust EV, Baross JA. Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, Its Estuary, and the Adjacent Coastal Ocean. Appl Environ Microbiol. 1999;65:3192–204.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu W, Lu H-P, Sastri A, Yeh Y-C, Gong G-C, Chou W-C, et al. Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities. ISME J. 2018;12:485–94.

    Article 
    PubMed 

    Google Scholar
     

  • Philippot L, Griffiths BS, Langenheder S. Microbial community resilience across ecosystems and multiple disturbances. Microbiol Mol Biol Rev. 2021;85:e00026-e120.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bender EA, Case TJ, Gilpin ME. Perturbation experiments in community ecology: theory and practice. Ecology. 1984;65:1–13.

    Article 

    Google Scholar
     

  • Fabricius KE. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull. 2005;50:125–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsuchiya K, Kuwahara VS, Yoshiki T, Nakajima R, Miyaguchi H, Kumekawa N, et al. Phytoplankton community response and succession in relation to typhoon passages in the coastal waters of Japan. J Plankton Res. 2014;36:424–38.

    Article 
    CAS 

    Google Scholar
     

  • Ryo M, Aguilar-Trigueros CA, Pinek L, Muller LAH, Rillig MC. Basic principles of temporal dynamics. Trends Ecol Evol. 2019;34:723–33.

    Article 
    PubMed 

    Google Scholar
     

  • Mellin C, Matthews S, Anthony KRN, Brown SC, Caley MJ, Johns KA, et al. Spatial resilience of the Great Barrier Reef under cumulative disturbance impacts. Glob Change Biol. 2019;25:2431–45.

    Article 

    Google Scholar
     

  • Wijaya W, Suhaimi Z, Chua CX, Sunil RS, Kolundžija S, Rohaizat AMB, et al. Frequent pulse disturbances shape resistance and resilience in tropical marine microbial communities. ISME Commun. 2023;3:1–10.

    Article 

    Google Scholar
     



  • Source link