Scientific Papers

Dissemination of mcr-1 and β-lactamase genes among Pseudomonas aeruginosa: molecular characterization of MDR strains in broiler chicks and dead-in-shell chicks infections | Annals of Clinical Microbiology and Antimicrobials


  • Abd El-Ghany WA. Pseudomonas aeruginosa infection of avian origin: zoonosis and one health implications. Vet World. 2021;14(8):2155.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dégi J, Moțco O-A, Dégi DM, Suici T, Mareș M, Imre K, et al. Antibiotic susceptibility profile of Pseudomonas aeruginosa canine isolates from a multicentric study in Romania. Antibiotics. 2021;10(7):846.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hai-ping HE. Isolation and identify of Pseudomonas aeruginosa in chicken dead-embryos. Chin Qinghai J Anim Vet Sci. 2009;3:25–7.


    Google Scholar
     

  • Dinev I, Denev S, Beev G. Clinical and morphological studies on spontaneous cases of Pseudomonas aeruginosa infections in birds. Pak Vet J. 2013;33(3):398–400.


    Google Scholar
     

  • Wagner VE, Filiatrault MJ, Picardo KF, Iglewski BH. Pseudomonas aeruginosa virulence and pathogenesis issues. Pseud Genom Mol Biol. 2008;1:129–58.


    Google Scholar
     

  • Urgancı NN, Yılmaz N, Koçer Alaşalvar G, Yıldırım Z. Pseudomonas aeruginosa and its pathogenicity. Turkish J Agric Food Sci Technol. 2022;10(4):726–38.

    Article 

    Google Scholar
     

  • Michalska M, Wolf P. Pseudomonas Exotoxin A: optimized by evolution for effective killing. Front Microbiol. 2015;6:963.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S, Levin SA, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci. 2018;115(15):E3463–70.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Maged O, Hamdey E. The analysis of livestock industry frame in Egypt: proposal in the light of bird flu crisis. IDSC: Ministerial Cabinet Information and Designing Making Supporting Center: report. 2006;29(5):2006.

  • Hedman HD, Vasco KA, Zhang L. A review of antimicrobial resistance in poultry farming within low-resource settings. Animals. 2020;10(8):1264.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayoumi A, Zidan S, Sakr MA, ElMashtouly A, Hadad G. Prevalence of extended spectrum Β-lactamase (ESBL) producing Escherichia coli and molecular characterization of ESBL, Carbapenemases, and Blacmy2 Genes in Broilers and Humans at Menoufia Governorate. Egypt J Curr Vet Res. 2023;5(2):179–95.

    Article 

    Google Scholar
     

  • Mohamed ES, Khairy RMM, Abdelrahim SS. Prevalence and molecular characteristics of ESBL and AmpC β-lactamase producing Enterobacteriaceae strains isolated from UTIs in Egypt. Antimicrob Resist Infect Control. 2020;9(1):1–9.

    Article 

    Google Scholar
     

  • Ahmed AS, Nasef SA, El Enbaawy MI. Emergency of extended-spectrum beta-lactamase-producing pseudomonas aeruginosa isolated from broiler chickens in Egypt.

  • Elmonir W, Abd El-Aziz NK, Tartor YH, Moustafa SM, Abo Remela EM, Eissa R, et al. Emergence of colistin and carbapenem resistance in extended-spectrum β-lactamase producing Klebsiella pneumoniae isolated from chickens and humans in Egypt. Biology. 2021;10(5):373.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Boucher Helen W, Talbot George H, Bradley John S, Edwards John E, Gilbert D, Rice Louis B, et al. Bad bugs, no drugs: no ESKAPE! an update from the infectious diseases Society of America. Clin Infect Dis. 2009;48(1):1–12.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39(6):1211–33.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Poole K. Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49(2):479–87.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fluit AC, Schmitz FJ. Resistance integrons and super-integrons. Clin Microbiol Infect. 2004;10(4):272–88.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Weldhagen GF. Integrons and β-lactamases—a novel perspective on resistance. Int J Antimicrob Agents. 2004;23(6):556–62.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ahmed ZS, Elshafiee EA, Khalefa HS, Kadry M, Hamza DA. Evidence of colistin resistance genes (mcr-1 and mcr-2) in wild birds and its public health implication in Egypt. Antimicrob Resist Infect Control. 2019;8:197.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Kadmy IMS, Ibrahim SA, Al-Saryi N, Aziz SN, Besinis A, Hetta HF. Prevalence of Genes Involved in Colistin Resistance in Acinetobacter baumannii: first report from Iraq. Microb Drug Resist. 2020;26(6):616–22.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tehrani S, Samami H, Keyvanfar A, Hashemi A. Detection of carbapenems and colistin resistance genes in Pseudomonas aeruginosa and Acinetobacter baumannii: a single-center study in Iran. Nov Biomed. 2022;10(3):178–83.

    CAS 

    Google Scholar
     

  • Yuan Y, Qu K, Tan D, Li X, Wang L, Cong C, et al. Isolation and characterization of a bacteriophage and its potential to disrupt multi-drug resistant Pseudomonas aeruginosa biofilms. Microb Pathog. 2019;128:329–36.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Parsek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol. 2003;57(1):677–701.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Vestby LK, Grønseth T, Simm R, Nesse LL. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics. 2020;9(2):59.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Balcázar JL, Subirats J, Borrego CM. The role of biofilms as environmental reservoirs of antibiotic resistance. Front Microbiol. 2015;6:1216.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaksch W. Euthanasia of day-old male chicks in the poultry industry. 1981.

  • Shukla and Mishra. Pseudomonas aeruginosa infection in broiler chicks in Jabalpur. Int J Ext Res. 2015;6:37–9.


    Google Scholar
     

  • Quinn PJ, Markey BK, Leonard FC, Hartigan P, Fanning S, Fitzpatrick E. Veterinary microbiology and microbial disease. USA: Wiley; 2011.


    Google Scholar
     

  • Ramadan H, Awad A, Ateya A. Detection of phenotypes, virulence genes and phylotypes of avian pathogenic and human diarrheagenic Escherichia coli in Egypt. J Infect Dev Countries. 2016;10(06):584–91.

    Article 
    CAS 

    Google Scholar
     

  • Spilker T, Coenye T, Vandamme P, LiPuma JJ. PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol. 2004;42(5):2074–9.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Younis G. Extracellular enzymes and toxins of Pseudomonas aeruginosa strains isolated from clinically diseased Egyptian cows. Adv Animal Vet Sci. 2015;3(10):522–6.

    Article 

    Google Scholar
     

  • Lévesque C, Piché L, Larose C, Roy PH. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother. 1995;39(1):185–91.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colom K, Pérez J, Alonso R, Fernández-Aranguiz A, LariÃo E, Cisterna RN. Simple and reliable multiplex PCR assay for detection of blaTEM, blaSHV and blaOXA-1 genes in Enterobacteriaceae. FEMS Microbiol Lett. 2003;223(2):147–51.

  • Archambault M, Petrov P, Hendriksen RS, Asseva G, Bangtrakulnonth A, Hasman H, et al. Molecular characterization and occurrence of extended-spectrum β-lactamase resistance genes among Salmonella enterica serovar corvallis from Thailand, Bulgaria, and Denmark. Microb Drug Resist. 2006;12(3):192–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mirsalehian A, Feizabadi M, Nakhjavani FA, Jabalameli F, Goli H, Kalantari N. Detection of VEB-1, OXA-10 and PER-1 genotypes in extended-spectrum β-lactamase-producing Pseudomonas aeruginosa strains isolated from burn patients. Burns. 2010;36(1):70–4.

    Article 
    PubMed 

    Google Scholar
     

  • Alipour T, Sadeghifard N, Amirmozafari N, Ghafurian S, Abdulamir AS, Mohebi R, et al. Incidence of extended spectrum beta-lactamase producing Pseudomonas aeruginosa and frequency of oxa-2 and oxa-10 genes. Aust J Basic Appl Sci. 2010;4(8):3202–7.

    CAS 

    Google Scholar
     

  • Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–8.

    Article 
    PubMed 

    Google Scholar
     

  • Koneman EW, Allen SD, Janda WM, Schreckenberger PC, Winn WC. Diagnostic microbiology. In: The nonfermentative gram-negative bacilli. Philadelphia: Lippincott-Raven Publishers; 1997. p. 253–320.


    Google Scholar
     

  • Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4):493–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • CLSI. What’s new in the 2019 CLSI standards for antimicrobial susceptibility testing (AST). 2019.

  • Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–81.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chandran A, Hatha AAM, Varghese S, Sheeja KM. Prevalence of multiple drug resistant Escherichia coli serotypes in a tropical estuary, India. Microb Environ. 2008;23(2):153–8.

    Article 

    Google Scholar
     

  • Eucast T. European Committee on Antimicrobial Susceptibility Testing, Breakpoint tables for interpretation of MICs and zone diameters. European Society of Clinical Microbiology and Infectious Diseases Basel; 2015.

  • Lin Z, Zhao X, Huang J, Liu W, Zheng Y, Yang X, et al. Rapid screening of colistin-resistant Escherichia coli, Acinetobacter baumannii and Pseudomonas aeruginosa by the use of Raman spectroscopy and hierarchical cluster analysis. Analyst. 2019;144(8):2803–10.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jarlier V, Nicolas MH, Fournier G, Philippon A. Extended broad-spectrum-lactamases conferring transferable resistance to newer-lactam agents in enterobacteriaceae: hospital prevalence and susceptibility patterns. Clin Infect Dis. 1988;10(4):867–78.

    Article 
    CAS 

    Google Scholar
     

  • Ahmed OI, El-Hady SA, Ahmed TM, Ahmed IZ. Detection of bla SHV and bla CTX-M genes in ESBL producing Klebsiella pneumoniae isolated from Egyptian patients with suspected nosocomial infections. Egypt J Med Human Genet. 2013;14(3):277–83.

    Article 

    Google Scholar
     

  • Singhai M, Malik A, Shahid M, Malik MA, Goyal R. A study on device-related infections with special reference to biofilm production and antibiotic resistance. J Glob Infect Dis. 2012;4(4):193–8.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • StepanoviĆ S, VukoviĆ D, Hola V, Bonaventura GD, DjukiĆ S, ĆIrkoviĆ I, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007;115(8):891–9.

  • Vasudevan P, Nair MKM, Annamalai T, Venkitanarayanan KS. Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Vet Microbiol. 2003;92(1–2):179–85.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • World Health Organization. Critically important antimicrobials for human medicine: ranking of antimicrobial agents for risk management of antimicrobial resistance due to non-human use. 2017.

  • Morales PA, Aguirre JS, Troncoso MR, Figueroa GO. Phenotypic and genotypic characterization of Pseudomonas spp. present in spoiled poultry fillets sold in retail settings. LWT. 2016;73:609–14.

    Article 
    CAS 

    Google Scholar
     

  • Qin X, Emerson J, Stapp J, Stapp L, Abe P, Burns JL. Use of real-time PCR with multiple targets to identify Pseudomonas aeruginosa and other nonfermenting gram-negative bacilli from patients with cystic fibrosis. J Clin Microbiol. 2003;41(9):4312–7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Woese CR. Bacterial evolution. Microbiol Rev. 1987;51(2):221–71.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wales A, Davies R. Review of hatchery transmission of bacteria with focus on Salmonella, chick pathogens and antimicrobial resistance. Worlds Poult Sci J. 2020;76(3):517–36.

    Article 

    Google Scholar
     

  • Abd El-Dayem GA, Ramadan AH, Ali HS. Egypt J Anim Health. 2021:80–99.

  • Azmy RW. Some studies on bacterial agants causing embryonic mortalities in chickens and ducks. 2010.

  • Shahat H, Mohamed H, Abd Al-Azeem M, Nasef S. Molecular detection of some virulence genes in Pseudomonas aeruginosa isolated from chicken embryos and broilers with regard to disinfectant resistance. SVU-Int J Vet Sci. 2019;2(2):52–70.


    Google Scholar
     

  • Elsayed MSA, Ammar AM, Al Shehri ZS, Abd-ElRahman H. Virulence repertoire of pseudomonas aeruginosa from some poultry farms with detection of resistance to various antimicrobials and plant extracts. Cell Mol Biol. 2016;62:124.


    Google Scholar
     

  • Amer MM, Elbayoumi KM, Amin Girh ZM, Mekky HM, Rabie NS. A study on bacterial contamination of dead in shell chicken embryos and culled one day chicks. Int J Pharm Phytopharmacol Res. 2017;7(2):5–11.

    CAS 

    Google Scholar
     

  • John Barnes H. Other bacterial disease: pseudomonas. In: Calnek, BW, John Barnes, H, Beard, CW, Mcdougald LR, Saif YM, editors. Diseases of poultry. 1997;10:291–2.

  • Kebede F. Pseudomonas infection in chickens. J Vet Med Anim Health. 2010;2(4):55–8.


    Google Scholar
     

  • Mohamed HA. Some studies on Pseudomonas species in chicken embryos and broilers in Assiut governorate. Ass Univ Bull Environ Res. 2004;7(1):23–30.


    Google Scholar
     

  • Bakheet AA, Naglaa MA, Sayed AH, Soad AN. Detection of disinfectant resistant aerobic bacteria in unhatched chicken eggs. Benha Vet Med J. 2017;32(2):248–59.


    Google Scholar
     

  • Wei L, Wu Q, Zhang J, Guo W, Gu Q, Wu H, et al. Prevalence, virulence, antimicrobial resistance, and molecular characterization of Pseudomonas aeruginosa isolates from drinking water in China. Front Microbiol. 2020;11:544653.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassan WH, Ibrahim AMK, Shany SAS, Salam HSH. Virulence and resistance determinants in Pseudomonas aeruginosa isolated from pericarditis in diseased broiler chickens in Egypt. J Adv Vet Anim Res. 2020;7(3):452–63.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tartor YH, El-Naenaeey EY. RT-PCR detection of exotoxin genes expression in multidrug resistant Pseudomonas aeruginosa. Cell Mol Biol (Noisy-le-grand). 2016;62(1):56–62.

    PubMed 
    CAS 

    Google Scholar
     

  • Radwan IAE, Shehata AH, Abed A, Reda Hosni A. Bacterial species associated with broiler proventriculitis and antimicrobial resistance of clinical important species. J Vet Med Res. 2016;23(2):275–87.

    Article 

    Google Scholar
     

  • Larsson DGJ. Pollution from drug manufacturing: review and perspectives. Philos Trans R Soc Lond B Biol Sci. 2014;369(1656):20130571.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moawad AA, Hotzel H, Neubauer H, Ehricht R, Monecke S, Tomaso H, et al. Antimicrobial resistance in Enterobacteriaceae from healthy broilers in Egypt: emergence of colistin-resistant and extended-spectrum β-lactamase-producing Escherichia coli. Gut Pathogens. 2018;10:1–12.

    Article 

    Google Scholar
     

  • Kimera ZI, Mshana SE, Rweyemamu MM, Mboera LEG, Matee MIN. Antimicrobial use and resistance in food-producing animals and the environment: an African perspective. Antimicrob Resist Infect Control. 2020;9:1–12.

    Article 

    Google Scholar
     

  • Eraky RD, Abd El-Ghany WA, Soliman KM. Studies on Pseudomonas aeruginosa infection in hatcheries and chicken. J Hellenic Vet Med Soc. 2020;71(1):1953.

    Article 

    Google Scholar
     

  • Tawakol M, Nabil N, Reda R. Molecular studies on some virulence factors of Pseudomonas aeruginosa isolated from chickens as a biofilm forming bacteria. Assiut Vet Med J. 2018;64(159):43–51.

    Article 

    Google Scholar
     

  • Diab M, Fam N, El-Said M, El-Defrawy EE-DI, Saber M. Occurrence of VIM-2 Metallo-ß-Lactamases in imipenem resistant and susceptible Pseudomonas aeruginosa clinical isolates from Egypt. Afr J Microbiol Res. 2013;7:4465–72.

    CAS 

    Google Scholar
     

  • Ejikeugwu C, Nworie O, Saki M, Al-Dahmoshi HOM, Al-Khafaji NSK, Ezeador C, et al. Metallo-β-lactamase and AmpC genes in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa isolates from abattoir and poultry origin in Nigeria. BMC Microbiol. 2021;21(1):124.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Maciá MD, Blanquer D, Togores B, Sauleda J, Pérez JL, Oliver A. Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob Agents Chemother. 2005;49(8):3382–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aniokette U, Iroha CS, Ajah MI, Nwakaeze AE. Occurrence of multi-drug resistant Gram-negative bacteria from poultry and poultry products sold in Abakaliki. J Agric Sci Food Technol. 2016;2:119–24.


    Google Scholar
     

  • Ahmed AS, Nasef SA, El Enbaawy MI. Emergency of extended-spectrum beta-lactamase-producing pseudomonas aeruginosa isolated from broiler chickens in Egypt. 2022.

  • Hassuna NA, Mohamed AHI, Abo-Eleuoon SM, Rizk HA-WA. High prevalence of multidrug resistant Pseudomonas aeru. Arch Clin Microbiol. 2015;6(4).

  • Dößelmann B, Willmann M, Steglich M, Bunk B, Nübel U, Peter S, et al. Rapid and consistent evolution of colistin resistance in extensively drug-resistant Pseudomonas aeruginosa during morbidostat culture. Antimicrob Agents Chemother. 2017;61(9):e00043-e117.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mostafa Badr J, Reyad El Saidy F, Abdelwahed AA. Emergence of multi-drug resistant Pseudomonas aeruginosa in broiler chicks. Int J Microbiol Biotechnol. 2020;5(2):41.

    Article 

    Google Scholar
     

  • Cavallo JD. Antibiotic susceptibility and mechanisms of beta-lactam resistance in 1310 strains of Pseudomonas aeruginosa: a French multicentre study (1996). J Antimicrob Chemother. 2000;46(1):133–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005;18(4):657–86.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gupta B, Sharma R, Garg K. Diagnostic characterisation of various phenotypic methods for class-a extended spectrum of β-lactamase among multidrug resistant pseudomonas aeruginosa isolated from diabetic patients. J Clin Diagn Res. 2022.

  • Ohore HU, Akinduti PA, Ahuekwe EF, Ajayi AS, Olasehinde GI. Molecular detection of ESBLs, TEM, SHV, and CTX-M in clinical Pseudomonas aeruginosa isolates in Ogun State. In: Bioenergy and biochemical processing technologies. Cham: Springer International Publishing; 2022. p. 127–36.

    Chapter 

    Google Scholar
     

  • Hosu MC, Vasaikar SD, Okuthe GE, Apalata T. Detection of extended spectrum beta-lactamase genes in Pseudomonas aeruginosa isolated from patients in rural Eastern Cape Province, South Africa. Sci Rep. 2021;11(1):7110.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ahmed AS, Nasef SA, El Enbaawy MI. Emergency of extended-spectrum beta-lactamase-producing Pseudomonas aeruginosa isolated from broiler chickens in Egypt. 2022:1–17.

  • Lee S, Park Y-J, Kim M, Lee HK, Han K, Kang CS, et al. Prevalence of Ambler class A and D β-lactamases among clinical isolates of Pseudomonas aeruginosa in Korea. J Antimicrob Chemother. 2005;56(1):122–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Amirkamali S, Naserpour-Farivar T, Azarhoosh K, Peymani A. Distribution of the bla OXA, bla VEB-1, and bla GES-1 genes and resistance patterns of ESBL-producing Pseudomonas aeruginosa isolated from hospitals in Tehran and Qazvin. Iran Rev Soc Brasil Med Trop. 2017;50(3):315–20.

    Article 

    Google Scholar
     

  • Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC-Antimicrob Resist. 2021;3(3):dlab092.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maclean K, Njamo FOJP, Serepa-Dlamini MH, Kondiah K, Green E. Antimicrobial susceptibility profiles among Pseudomonas aeruginosa isolated from professional SCUBA divers with otitis externa, swimming pools and the ocean at a diving operation in South Africa. Pathogens. 2022;11(1):91.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fonseca ÃRL, Vieira VNV, Cipriano RN, Vicente ACP. Class 1 integrons in Pseudomonas aeruginosa isolates from clinical settings in Amazon region, Brazil. FEMS Immunol Med Microbiol. 2005;44(3):303–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ruiz-Martínez L, López-Jiménez L, Fusté E, Vinuesa T, Martínez JP, Viñas M. Class 1 integrons in environmental and clinical isolates of Pseudomonas aeruginosa. Int J Antimicrob Agents. 2011;38(5):398–402.

    Article 
    PubMed 

    Google Scholar
     

  • Xu Z, Li L, Shirtliff ME, Alam MJ, Yamasaki S, Shi L. Occurrence and characteristics of class 1 and 2 integrons in Pseudomonas aeruginosa isolates from patients in southern China. J Clin Microbiol. 2009;47(1):230–4.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Blahna MT, Zalewski CA, Reuer J, Kahlmeter G, Foxman B, Marrs CF. The role of horizontal gene transfer in the spread of trimethoprim–sulfamethoxazole resistance among uropathogenic Escherichia coli in Europe and Canada. J Antimicrob Chemother. 2006;57(4):666–72.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Khalifa HO, Ahmed AM, Oreiby AF, Eid AM, Shimamoto T, Shimamoto T. Characterisation of the plasmid-mediated colistin resistance gene mcr-1 in Escherichia coli isolated from animals in Egypt. Int J Antimicrob Agents. 2016;47(5):413–4.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kunwar A, Shrestha P, Shrestha S, Thapa S, Shrestha S, Amatya NM. Detection of biofilm formation among Pseudomonas aeruginosa isolated from burn patients. Burns Open. 2021;5(3):125–9.

    Article 

    Google Scholar
     

  • Nasirmoghadas P, Yadegari S, Moghim S, Esfahani BN, Fazeli H, Poursina F, et al. Evaluation of biofilm formation and frequency of multidrug-resistant and extended drug-resistant strain in Pseudomonas aeruginosa isolated from burn patients in Isfahan. Adv Biomed Res. 2018;7:61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merino L, Procura F, Trejo FM, Bueno DJ, Golowczyc MA. Biofilm formation by Salmonella sp. in the poultry industry: detection, control and eradication strategies. Food Res Int. 2019;119:530–40.

    Article 
    PubMed 

    Google Scholar
     

  • Lineback CB, Nkemngong CA, Wu ST, Li X, Teska PJ, Oliver HF. Hydrogen peroxide and sodium hypochlorite disinfectants are more effective against Staphylococcus aureus and Pseudomonas aeruginosa biofilms than quaternary ammonium compounds. Antimicrob Resist Infect Control. 2018;7:154.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link