Scientific Papers

Differences in spatial niche of terrestrial mammals when facing extreme snowfall: the case in east Asian forests | Frontiers in Zoology


  • Lehikoinen A, Virkkala R. North by north-west: climate change and directions of density shifts in birds. Global Change Biol. 2016;22:1121–9.

    Article 

    Google Scholar
     

  • Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen I-C, Clark TD, Colwell RK, Danielsen F, Evengård B. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science. 2017;355:1389.

    Article 
    CAS 

    Google Scholar
     

  • Kreyling J, Grant K, Hammerl V, Arfin-Khan MAS, Malyshev AV, Peñuelas J, Pritsch K, Sardans J, Schloter M, Schuerings J, et al. Winter warming is ecologically more relevant than summer warming in a cool-temperate grassland. Sci Rep. 2019;9:14632.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Humphries MM, Umbanhowar J, McCann KS. Bioenergetic prediction of climate change impacts on northern mammals. Integr Comp Biol. 2004;44:152–62.

    Article 
    PubMed 

    Google Scholar
     

  • Kautz TM, Belant JL, Beyer DE Jr., Strickland BK, Duquette JF. Influence of body mass and environmental conditions on winter mortality risk of a northern ungulate: evidence for a late-winter survival bottleneck. Ecol Evol. 2020;10:1666–77.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osland MJ, Stevens PW, Lamont MM, Brusca RC, Hart KM, Waddle JH, Langtimm CA, Williams CM, Keim BD, Terando AJ, et al. Tropicalization of temperate ecosystems in North America: the northward range expansion of tropical organisms in response to warming winter temperatures. Global Change Biol. 2021;27:3009–34.

    Article 

    Google Scholar
     

  • Harris RMB, Beaumont LJ, Vance TR, Tozer CR, Remenyi TA, Perkins-Kirkpatrick SE, Mitchell PJ, Nicotra AB, McGregor S, Andrew NR, et al. Biological responses to the press and pulse of climate trends and extreme events. Nat Clim Chang. 2018;8:579–87.

    Article 

    Google Scholar
     

  • Wallace JM, Held IM, Thompson DWJ, Trenberth KE, Walsh JE. Global Warming and Winter Weather. Science. 2014;343:729–30.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang J, Tian W, Chipperfield MP, Xie F, Huang J. Persistent shift of the Arctic polar vortex towards the eurasian continent in recent decades. Nat Clim Chang. 2016;6:1094–9.

    Article 

    Google Scholar
     

  • Williams CM, Henry HAL, Sinclair BJ. Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol Rev. 2015;90:214–35.

    Article 
    PubMed 

    Google Scholar
     

  • Fancy SG, White RG. Incremental cost of activity. In: White R, Hudson R, editors. Bioenergetics of wild herbivores. Boca Raton: CRC Press; 1985. p. 143–59.


    Google Scholar
     

  • Harris G, Nielson RM, Rinaldi T, Lohuis T. Effects of winter recreation on northern ungulates with focus on moose (Alces alces) and snowmobiles. Eur J Wildl Res. 2014;60:45–58.

    Article 

    Google Scholar
     

  • Moen AN. Energy conservation by white-tailed deer in the winter. Ecology. 1976;57:192–8.

    Article 

    Google Scholar
     

  • Dowd JL, Gese EM, Aubry LM. Winter space use of coyotes in high-elevation environments: behavioral adaptations to deep-snow landscapes. J Ethol. 2014;32:29–41.

    Article 

    Google Scholar
     

  • Droghini A, Boutin S. The calm during the storm: snowfall events decrease the movement rates of grey wolves (Canis lupus). PLoS ONE. 2018;13:e0205742.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pozzanghera C, Sivy K, Lindberg M, Prugh L. Variable effects of snow conditions across boreal mesocarnivore species. Can J Zool. 2016;94:697–705.

    Article 

    Google Scholar
     

  • Telfer ES, Kelsall JP. Adaptation of some large north American mammals for survival in snow. Ecology. 1984;65:1828–34.

    Article 

    Google Scholar
     

  • Robinson BG, Merrill EH. The influence of snow on the functional response of grazing ungulates. Oikos. 2012;121:28–34.

    Article 

    Google Scholar
     

  • Brown WK, Theberge JB. The effect of extreme snowcover on feeding-site selection by woodland caribou. J Wildl Manage. 1990;54:161–8.

    Article 

    Google Scholar
     

  • Dumont A, Crête M, Ouellet J-P, Huot J, Lamoureux J. Population dynamics of northern white-tailed deer during mild winters: evidence of regulation by food competition. Can J Zool. 2000;78:764–76.

    Article 

    Google Scholar
     

  • Sakuragi M, Igota H, Uno H, Kaji K, Kaneko M, Akamatsu R, Maekawa K. Seasonal habitat selection of an expanding sika deer Cervus nippon population in eastern Hokkaido, Japan. Wildl Biol. 2003;9:141–53.

    Article 

    Google Scholar
     

  • Sakamaki H, Enari H. Activity-specific evaluation of winter habitat use by Japanese macaques in snow areas, northern Japan: implications for conifer plantation management. For Ecol Manage. 2012;270:19–24.

    Article 

    Google Scholar
     

  • Enari H, Sakamaki-Enari H. Influence of heavy snow on the feeding behavior of Japanese macaques (Macaca fuscata) in northern Japan. Am J Primatol. 2013;75:534–44.

    Article 
    PubMed 

    Google Scholar
     

  • Ossi F, Gaillard J-M, Hebblewhite M, Cagnacci F. Snow sinking depth and forest canopy drive winter resource selection more than supplemental feeding in an alpine population of roe deer. Eur J Wildl Res. 2015;61:111–24.

    Article 

    Google Scholar
     

  • Watanabe T. Studies of snow accumulation and ablation on perennial snow patches in the mountains of Japan. Prog Phys Geogr. 1988;12:560–81.

    Article 

    Google Scholar
     

  • Lee W, Choi HM, Lee JY, Kim DH, Honda Y, Kim H. Temporal changes in mortality impacts of heat wave and cold spell in Korea and Japan. Environ Int. 2018;116:136–46.

    Article 
    PubMed 

    Google Scholar
     

  • Sato K, Inoue J, Yamazaki A, Kim J-H, Maturilli M, Dethloff K, Hudson SR, Granskog MA. Improved forecasts of winter weather extremes over midlatitudes with extra Arctic observations. J Geophys Res-Oceans. 2017;122:775–87.

    Article 

    Google Scholar
     

  • Ohdachi SD, Ishibashi Y, Iwasa MA, Saito T. The wild mammals of Japan: second edition. Kyoto: Shoukadoh; 2015.


    Google Scholar
     

  • Guisan A, Petitpierre B, Broennimann O, Daehler C, Kueffer C. Unifying niche shift studies: insights from biological invasions. Trends Ecol Evol. 2014;29:260–9.

    Article 
    PubMed 

    Google Scholar
     

  • Biodiversity Center of Japan. Natural environmental information GIS. Tokyo: Ministry of the Environment; 2023.


    Google Scholar
     

  • Seki Y, Enari H, Kodera Y, Tsuji Y. Field survey techniques for wildlife management. Kyoto: Kyoto University Press; 2015.


    Google Scholar
     

  • Enari H, Akamatsu M, Yamashita J, Kanayama N, Iida M, Enari HS. Gait patterns in snow—A possible criterion to differentiate sika deer and Japanese serow tracks. Mamm Study. 2023;48:69–73.

    Article 

    Google Scholar
     

  • Warren DL, Matzke NJ, Cardillo M, Baumgartner JB, Beaumont LJ, Turelli M, Glor RE, Huron NA, Simões M, Iglesias TL, et al. ENMTools 1.0: an R package for comparative ecological biogeography. Ecography. 2021;44:504–11.

    Article 

    Google Scholar
     

  • R Development Core Team. R platform v.4.2.3: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2023.


    Google Scholar
     

  • Wood SN. Generalized additive models: an introduction with R. London: CRC Press; 2006.

    Book 

    Google Scholar
     

  • Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006;190:231–59.

    Article 

    Google Scholar
     

  • Breiman L. Random forests. Mach Learn. 2001;45:5–32.

    Article 

    Google Scholar
     

  • Guisan A, Thuiller W, Zimmermann NE. Habitat suitability and distribution models: with applications in R. Cambridge: Cambridge University Press; 2017.

    Book 

    Google Scholar
     

  • Enari H, Sakamaki H. Landscape-scale evaluation of habitat uses by sympatric mammals foraging for bark and buds in a heavy snowfall area of northern Japan. Acta Theriol. 2012;57:173–83.

    Article 

    Google Scholar
     

  • Enari H, Sakamaki-Enari H. Resource use of Japanese macaques in heavy snowfall areas: implications for habitat management. Primates. 2013;54:259–69.

    Article 
    PubMed 

    Google Scholar
     

  • Boria RA, Olson LE, Goodman SM, Anderson RP. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model. 2014;275:73–7.

    Article 

    Google Scholar
     

  • Senay SD, Worner SP, Ikeda T. Novel three-step pseudo-absence selection technique for improved species distribution modelling. PLoS ONE. 2013;8:e71218.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • VanDerWal J, Shoo LP, Graham C, Williams SE. Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol Model. 2009;220:589–94.

    Article 

    Google Scholar
     

  • Warren DL, Beaumont LJ, Dinnage R, Baumgartner J. New methods for measuring ENM breadth and overlap in environmental space. Ecography. 2019;42:444–6.

    Article 

    Google Scholar
     

  • Baltrūnaitė L. Diet and winter habitat use of the red fox, pine marten and raccoon dog in Dzūkija National Park, Lithuania. Acta Zool Litu. 2006;16:46–53.

    Article 

    Google Scholar
     

  • Geisser H, Reyer H-U. The influence of food and temperature on population density of wild boar Sus scrofa in the Thurgau (Switzerland). J Zool. 2005;267:89–96.

    Article 

    Google Scholar
     

  • Morelle K, Lejeune P. Seasonal variations of wild boar Sus scrofa distribution in agricultural landscapes: a species distribution modelling approach. Eur J Wildl Res. 2015;61:45–56.

    Article 

    Google Scholar
     

  • Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol. 2010;1:3–14.

    Article 

    Google Scholar
     

  • Swets JA. Measuring the accuracy of diagnostic systems. Science. 1988;240:1285–93.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fisher A, Rudin C, Dominici F. All models are wrong, but many are useful: learning a variable’s importance by studying an entire class of prediction models simultaneously. J Mach Learn Res. 2019;20:1–81.

    CAS 

    Google Scholar
     

  • Urich DL, Graham JP. Applying habitat evaluation procedures (HEP) to wildlife area planning in Missouri. Wildl Soc Bull. 1983;11:215–22.


    Google Scholar
     

  • Merow C, Smith MJ, Edwards TC Jr, Guisan A, McMahon SM, Normand S, Thuiller W, Wüest RO, Zimmermann NE, Elith J. What do we gain from simplicity versus complexity in species distribution models? Ecography. 2014;37:1267–81.

    Article 

    Google Scholar
     

  • Broennimann O, Fitzpatrick MC, Pearman PB, Petitpierre B, Pellissier L, Yoccoz NG, Thuiller W, Fortin MJ, Randin C, Zimmermann NE. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecol Biogeogr. 2012;21:481–97.

    Article 

    Google Scholar
     

  • Wiens JJ, Graham CH. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst. 2005;36:519–39.

    Article 

    Google Scholar
     

  • Melis C, Szafrańska PA, Jędrzejewska B, Bartoń K. Biogeographical variation in the population density of wild boar (Sus scrofa) in western Eurasia. J Biogeogr. 2006;33:803–11.

    Article 

    Google Scholar
     

  • Markov N, Economov A, Hjeljord O, Rolandsen CM, Bergqvist G, Danilov P, Dolinin V, Kambalin V, Kondratov A, Krasnoshapka N, et al. The wild boar Sus scrofa in northern Eurasia: a review of range expansion history, current distribution, factors affecting the northern distributional limit, and management strategies. Mamm Rev. 2022;52:519–37.

    Article 

    Google Scholar
     

  • Markov N, Pankova N, Morelle K. Where winter rules: modeling wild boar distribution in its north-eastern range. Sci Total Environ. 2019;687:1055–64.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shimano K, Yatake H, Nashimoto M, Shiraki S, Matsuki R. Habitat availability and density estimations for the Japanese hare by fecal pellet counting. J Wildl Manage. 2006;70:1650–8.

    Article 

    Google Scholar
     

  • Sokolov AA, Sokolova NA, Ims RA, Brucker L, Ehrich D. Emergent rainy winter warm spells may promote boreal predator expansion into the Arctic. Arctic. 2016;69:121–9.

    Article 

    Google Scholar
     

  • Hisano M, Evans MJ, Soga M, Tsunoda H. Red foxes in Japan show adaptability in prey resource according to geography and season: a meta-analysis. Ecol Res. 2022;37:197–214.

    Article 

    Google Scholar
     

  • Otsu S. Winter food of Japanese yellow marten, Martes Melumpus Melumpus (TEMMINCK Et SCHLEGEL), in Yamagata Prefecture. Japanese J Appl Entomol Zool. 1972;16:75–8.

    Article 

    Google Scholar
     

  • Enari H. Snow tolerance of Japanese macaques inhabiting high-latitude mountainous forests of Japan. In: Grow N, Gursky-Doyen S, Krzton A, editors. High altitude primates. New York: Springer; 2014. p. 133–51.

    Chapter 

    Google Scholar
     

  • Fooden J, Aimi M. Systematic review of Japanese macaques, Macaca fuscata (Gray, 1870). Fieldiana: Zool. 2005;104:1–200.


    Google Scholar
     

  • Iwamoto M. On a skull of a fossil macaque from the shikimizu limestone quarry in the Shikoku district, Japan. Primates. 1975;16:83–94.

    Article 

    Google Scholar
     

  • Markov N, Neifel’d N, Estaf’ev A. Ecological aspects of dispersal of the wild boar, Sus scrofa L., 1758, in the northeast of European Russia. Russian J Ecol. 2004;35:131–4.

    Article 

    Google Scholar
     

  • Yamada F, Shiraishi S, Taniguchi A, Uchida TA. Growth, development and age determination of the Japanese hare, Lpeus brachyurus brachyurus. J Mammal Soc Jpn. 1990;14:65–77.


    Google Scholar
     

  • Nunome M, Kinoshita G, Tomozawa M, Torii H, Matsuki R, Yamada F, Matsuda Y, Suzuki H. Lack of association between winter coat colour and genetic population structure in the Japanese hare, Lepus brachyurus (Lagomorpha: Leporidae). Biol J Linn Soc. 2014;111:761–76.

    Article 

    Google Scholar
     

  • Ochiai K, Susaki K, Mochizuki T, Okasaka Y, Yamada Y. Relationships among habitat quality, home range size, reproductive performance and population density: comparison of three populations of the Japanese serow (Capricornis crispus). Mamm Study. 2010;35:265–76.

    Article 

    Google Scholar
     

  • DelGiudice GD, Fieberg JR, Sampson BA. A long-term assessment of the variability in winter use of dense conifer cover by female white-tailed deer. PLoS ONE. 2013;8:e65368.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Enari H, Enari HS. Not avian but mammalian scavengers efficiently consume carcasses under heavy snowfall conditions: a case from northern Japan. Mamm Biol. 2021;101:419–28.

    Article 

    Google Scholar
     

  • Inagaki A, Allen ML, Maruyama T, Yamazaki K, Tochigi K, Naganuma T, Koike S. Vertebrate scavenger guild composition and utilization of carrion in an east Asian temperate forest. Ecol Evol. 2020;10:1223–32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kochmann J, Cunze S, Klimpel S. Climatic niche comparison of raccoons Procyon lotor and raccoon dogs Nyctereutes procyonoides in their native and non-native ranges. Mamm Rev. 2021;51:585–95.

    Article 

    Google Scholar
     

  • Koganezawa M. The effect of severe winter on natality of Japanese monkeys in Nikko. In: Ehara A, Kimura T, Takenaka O, Iwamoto M, editors. Primatology Today. Amsterdam: Elsevier Science Publishers; 1991. p. 129–30.


    Google Scholar
     

  • Ochiai K, Nakama S, Hanawa S, Amagasa T. Population dynamics of Japanese serow in relation to social organization and habitat conditions. I. Stability of Japanese serow density in stable habitat conditions. Ecol Res. 1993;8:11–8.

    Article 

    Google Scholar
     

  • Okarma H, Jędrzejewska B, Jędrzejewski W, Krasiński ZA, Miłkowski L. The roles of predation, snow cover, acorn crop, and man-related factors on ungulate mortality in Białowieża Primeval Forest, Poland. Acta Theriol. 1995;40:197–217.

    Article 

    Google Scholar
     

  • Takatsuki S, Kobayashi-Hori Y, Ito T. Food habitats of Japanese serow (Capricornis crispus) in the western foothills of Mt. Zao, with reference to snow cover. J Mammal Soc Jpn. 1995;20:151–5.


    Google Scholar
     

  • Ministry of the Environment. Results of population estimates and distributions of sika deer and wild boars in Japan. Tokyo: Ministry of the Environment; 2021

  • Ministry of the Environment. Resport on distributions of middle-sized mammals: raccoon dog, red fox, and Japanese badger. Tokyo: Ministry of the Environment; 2022

  • Enari H, Seino H, Uno T, Morimitsu Y, Takiguchi M, Suzuki K, Tsuji Y, Yamabata N, Kiyono M, Akaza H, et al. Optimizing habitat connectivity among macaque populations in modern Japan. Conserv Sci Pract. 2022;4:e12824.

    Article 

    Google Scholar
     

  • Shepherd TG. Atmospheric circulation as a source of uncertainty in climate change projections. Nat Geosci. 2014;7:703–8.

    Article 
    CAS 

    Google Scholar
     

  • Engler R, Randin CF, Thuiller W, Dullinger S, Zimmermann NE, Araujo MB, Pearman PB, Le Lay G, Piedallu C, Albert CH. 21st century climate change threatens mountain flora unequally across Europe. Global Change Biol. 2011;17:2330–41.

    Article 

    Google Scholar
     

  • Diniz-Filho JAF, Mauricio Bini L, Fernando Rangel T, Loyola RD, Hof C, Nogués-Bravo D, Araújo MB. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography. 2009;32:897–906.

    Article 

    Google Scholar
     



  • Source link