Scientific Papers

Dysfunction of DMT1 and miR-135b in the gut-testis axis in high-fat diet male mice | Genes & Nutrition


  • NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–42. https://doi.org/10.1016/S0140-6736(17)32129-3.

    Article 

    Google Scholar
     

  • Lemay A, Labrie F. Electrophoretic analysis of polypeptides of plasma membranes from bovine pituitary gland. Can J Biochem. 1974;52(7):620–30. https://doi.org/10.1139/o74-089.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wenzel BJ, Stults HB, Mayer J. Hypoferraemia in obese adolescents. Lancet. 1962;2(7251):327–8. https://doi.org/10.1016/s0140-6736(62)90110-1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seltzer CC, Mayer J. Serum iron and iron-binding capacity in adolescents. II. Comparison of Obese and Nonobese Subjects. Am J Clin Nutr. 1963;13:354–61. https://doi.org/10.1093/ajcn/13.6.354.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nead KG, Halterman JS, Kaczorowski JM, Auinger P, Weitzman M. Overweight children and adolescents: a risk group for iron deficiency. Pediatrics. 2004;114(1):104–8. https://doi.org/10.1542/peds.114.1.104.

    Article 
    PubMed 

    Google Scholar
     

  • Moayeri H, Bidad K, Zadhoush S, Gholami N, Anari S. Increasing prevalence of iron deficiency in overweight and obese children and adolescents (Tehran Adolescent Obesity Study). Eur J Pediatr. 2006;165(11):813–4. https://doi.org/10.1007/s00431-006-0178-0.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao L, Zhang X, Shen Y, Fang X, Wang Y, Wang F. Obesity and iron deficiency: a quantitative meta-analysis. Obes Rev. 2015;16(12):1081–93. https://doi.org/10.1111/obr.12323.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zimmermann MB, Zeder C, Muthayya S, Winichagoon P, Chaouki N, Aeberli I, et al. Adiposity in women and children from transition countries predicts decreased iron absorption, iron deficiency and a reduced response to iron fortification. Int J Obes (Lond). 2008;32(7):1098–104. https://doi.org/10.1038/ijo.2008.43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM. The essential metals for humans: a brief overview. J Inorg Biochem. 2019;195:120–9. https://doi.org/10.1016/j.jinorgbio.2019.03.013.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson GJ, Frazer DM. Current understanding of iron homeostasis. Am J Clin Nutr. 2017;106(6):1559S-1566S. https://doi.org/10.3945/ajcn.117.155804.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yanatori I, Kishi F. DMT1 and iron transport. Free Radic Biol Med. 2019;133:55–63. https://doi.org/10.1016/j.freeradbiomed.2018.07.020.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo C, Xu W, Tang X, Liu X, Cheng Y, Wu Y, et al. Canonical Wnt signaling works downstream of iron overload to prevent ferroptosis from damaging osteoblast differentiation. Free Radic Biol Med. 2022;188:337–50. https://doi.org/10.1016/j.freeradbiomed.2022.06.236.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shawki A, Anthony SR, Nose Y, Engevik MA, Niespodzany EJ, Barrientos T, et al. Intestinal DMT1 is critical for iron absorption in the mouse but is not required for the absorption of copper or manganese. Am J Physiol Gastrointest Liver Physiol. 2015;309(8):G635–47. https://doi.org/10.1152/ajpgi.00160.2015.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mackenzie B, Garrick MD. Iron Imports. II. Iron uptake at the apical membrane in the intestine. Am J Physiol Gastrointest Liver Physiol. 2005;289(6):G981–6. https://doi.org/10.1152/ajpgi.00363.2005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conrad ME, Umbreit JN. Iron absorption and transport-an update. Am J Hematol. 2000;64(4):287–98. https://doi.org/10.1002/1096-8652(200008)64:4%3c287::aid-ajh9%3e3.0.co;2-l.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith KB, Smith MS. Obesity Statistics. Prim Care. 2016;43(1):121–ix. https://doi.org/10.1016/j.pop.2015.10.001.

    Article 
    PubMed 

    Google Scholar
     

  • Ganz T. Anemia of Inflammation. N Engl J Med. 2019;381(12):1148–57. https://doi.org/10.1056/NEJMra1804281.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature. 2010;467(7318):963–6. https://doi.org/10.1038/nature09491.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coimbra S, Catarino C, Santos-Silva A. The role of adipocytes in the modulation of iron metabolism in obesity. Obes Rev. 2013;14(10):771–9. https://doi.org/10.1111/obr.12057.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aeberli I, Hurrell RF, Zimmermann MB. Overweight children have higher circulating hepcidin concentrations and lower iron status but have dietary iron intakes and bioavailability comparable with normal weight children. Int J Obes (Lond). 2009;33(10):1111–7. https://doi.org/10.1038/ijo.2009.146.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • del Giudice EM, Santoro N, Amato A, Brienza C, Calabrò P, Wiegerinck ET, et al. Hepcidin in obese children as a potential mediator of the association between obesity and iron deficiency. J Clin Endocrinol Metab. 2009;94(12):5102–7. https://doi.org/10.1210/jc.2009-1361.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ganz T, Nemeth E. Iron sequestration and anemia of inflammation. Semin Hematol. 2009;46(4):387–93. https://doi.org/10.1053/j.seminhematol.2009.06.001.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nairz M, Haschka D, Demetz E, Weiss G. Iron at the interface of immunity and infection. Front Pharmacol. 2014;5:152. https://doi.org/10.3389/fphar.2014.00152.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tvrda E, Peer R, Sikka SC, Agarwal A. Iron and copper in male reproduction: a double-edged sword. J Assist Reprod Genet. 2015;32(1):3–16. https://doi.org/10.1007/s10815-014-0344-7.

    Article 
    PubMed 

    Google Scholar
     

  • Mehta S, Goyal L, Meena ML, Gulati S, Sharma N, Harshvardhan L, et al. Assessment of pituitary gonadal axis and sperm parameters in anemic eugonadal males before and after correction of iron deficiency anemia. J Assoc Physicians India. 2018;66(9):11–2.

    PubMed 

    Google Scholar
     

  • Agbaraji VO, Scott RB, Leto S, Kingslow LW. Fertility studies in sickle cell disease: semen analysis in adult male patients. Int J Fertil. 1988;33(5):347–52.

    CAS 
    PubMed 

    Google Scholar
     

  • López P, Castro A, Flórez M, Miranda K, Aranda P, Sánchez-González C, et al. miR-155 and miR-122 expression of spermatozoa in obese subjects. Front Genet. 2018;9:175. https://doi.org/10.3389/fgene.2018.00175.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aydemir B, Kiziler AR, Onaran I, Alici B, Ozkara H, Akyolcu MC. Impact of Cu and Fe concentrations on oxidative damage in male infertility. Biol Trace Elem Res. 2006;112(3):193–203. https://doi.org/10.1385/BTER:112:3:193.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grandjean V, Fourré S, De Abreu DA, Derieppe MA, Remy JJ, Rassoulzadegan M. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci Rep. 2015;5:18193. https://doi.org/10.1038/srep18193.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qureshi IA, Mehler MF. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci. 2012;13(8):528–41. https://doi.org/10.1038/nrn3234.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci. 2014;17(5):667–9. https://doi.org/10.1038/nn.3695.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han TS, Voon DC, Oshima H, Nakayama M, Echizen K, Sakai E, et al. Interleukin 1 up-regulates MicroRNA 135b to promote inflammation-associated gastric carcinogenesis in mice. Gastroenterology. 2019;156(4):1140-1155.e4. https://doi.org/10.1053/j.gastro.2018.11.059.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pinhas-Hamiel O, Newfield RS, Koren I, Agmon A, Lilos P, Phillip M. Greater prevalence of iron deficiency in overweight and obese children and adolescents. Int J Obes Relat Metab Disord. 2003;27(3):416–8. https://doi.org/10.1038/sj.ijo.0802224.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yanoff LB, Menzie CM, Denkinger B, Sebring NG, McHugh T, Remaley AT, et al. Inflammation and iron deficiency in the hypoferremia of obesity. Int J Obes (Lond). 2007;31(9):1412–9. https://doi.org/10.1038/sj.ijo.0803625.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gesquiere I, Foulon V, Augustijns P, Gils A, Lannoo M, Van der Schueren B, et al. Micronutrient intake, from diet and supplements, and association with status markers in pre- and post-RYGB patients. Clin Nutr. 2017;36(4):1175–81. https://doi.org/10.1016/j.clnu.2016.08.009.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brasse-Lagnel C, Karim Z, Letteron P, Bekri S, Bado A, Beaumont C. Intestinal DMT1 cotransporter is down-regulated by hepcidin via proteasome internalization and degradation. Gastroenterology. 2011;140(4):1261-1271.e1. https://doi.org/10.1053/j.gastro.2010.12.037.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mena NP, Esparza A, Tapia V, Valdés P, Núñez MT. Hepcidin inhibits apical iron uptake in intestinal cells. Am J Physiol Gastrointest Liver Physiol. 2008;294(1):G192–8. https://doi.org/10.1152/ajpgi.00122.2007.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woloshun RR, Yu Y, Xu X, Lee JK, Zhu S, Shine JS, et al. Four AAs increase DMT1 abundance in duodenal brush-border membrane vesicles and enhance iron absorption in iron-deprived mice. Blood Adv. 2022;6(10):3011–21. https://doi.org/10.1182/bloodadvances.2021005111.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuxin L, Chen L, Xiaoxia L, Yue L, Junjie L, Youzhu L, et al. Research progress on the relationship between obesity-inflammation-aromatase axis and male infertility. Oxid Med Cell Longev. 2021;2021:6612796. https://doi.org/10.1155/2021/6612796.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akhter MS, Hamali HA, Iqbal J, Mobarki AA, Rashid H, Dobie G, et al. Iron deficiency anemia as a factor in male infertility: awareness in health college students in the Jazan Region of Saudi Arabia. Int J Environ Res Public Health. 2021;18(24):12866. https://doi.org/10.3390/ijerph182412866.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barbagallo F, Condorelli RA, Mongioì LM, Cannarella R, Cimino L, Magagnini MC, et al. Molecular mechanisms underlying the relationship between obesity and male infertility. Metabolites. 2021;11(12):840. https://doi.org/10.3390/metabo11120840.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner IV, Klöting N, Atanassova N, Savchuk I, Spröte C, Kiess W, et al. Prepubertal onset of obesity negatively impacts on testicular steroidogenesis in rats. Mol Cell Endocrinol. 2016;437:154–62. https://doi.org/10.1016/j.mce.2016.08.027.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao JL, Zhao YY, Zhu WJ. A high-fat, high-protein diet attenuates the negative impact of casein-induced chronic inflammation on testicular steroidogenesis and sperm parameters in adult mice. Gen Comp Endocrinol. 2017;252:48–59. https://doi.org/10.1016/j.ygcen.2017.07.013.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang FL, Yuan S, Dong PY, Ma HH, De Felici M, Shen W, et al. Multi-omics analysis reveals that iron deficiency impairs spermatogenesis by gut-hormone synthesis axis. Ecotoxicol Environ Saf. 2022;248: 114344. https://doi.org/10.1016/j.ecoenv.2022.114344.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsao CW, Liao YR, Chang TC, Liew YF, Liu CY. Effects of iron supplementation on testicular function and spermatogenesis of iron-deficient rats. Nutrients. 2022;14(10):2063. https://doi.org/10.3390/nu14102063.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fullston T, Ohlsson-Teague EM, Print CG, Sandeman LY, Lane M. Sperm microRNA content is altered in a mouse model of male obesity, but the same suite of microRNAs are not altered in offspring’s sperm. PLoS ONE. 2016;11(11): e0166076. https://doi.org/10.1371/journal.pone.0166076.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan S, Liu Y, Peng H, Tang C, Hennig GW, Wang Z, et al. Motile cilia of the male reproductive system require miR-34/miR-449 for development and function to generate luminal turbulence. Proc Natl Acad Sci U S A. 2019;116(9):3584–93. https://doi.org/10.1073/pnas.1817018116.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuang W, Zhang J, Lan Z, Deepak RNVK, Liu C, Ma Z, et al. SLC22A14 is a mitochondrial riboflavin transporter required for sperm oxidative phosphorylation and male fertility. Cell Rep. 2021;35(3): 109025. https://doi.org/10.1016/j.celrep.2021.109025.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ward GE, Vacquier VD. Dephosphorylation of a major sperm membrane protein is induced by egg jelly during sea urchin fertilization. Proc Natl Acad Sci U S A. 1983;80(18):5578–82. https://doi.org/10.1073/pnas.80.18.5578.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Flaherty C, de Lamirande E, Gagnon C. Positive role of reactive oxygen species in mammalian sperm capacitation: triggering and modulation of phosphorylation events. Free Radic Biol Med. 2006;41(4):528–40. https://doi.org/10.1016/j.freeradbiomed.2006.04.027.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scheffler K, Uraji J, Jentoft I, Cavazza T, Mönnich E, Mogessie B, et al. Two mechanisms drive pronuclear migration in mouse zygotes. Nat Commun. 2021;12(1):841. https://doi.org/10.1038/s41467-021-21020-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang J, Wu G, Feng Y, Lv Q, Lin S, Hu J. Effects of taurine on male reproduction in rats of different ages. J Biomed Sci. 2010;171 Suppl 1(Suppl 1):S9. https://doi.org/10.1186/1423-0127-17-S1-S9.

    Article 
    CAS 

    Google Scholar
     

  • Laurinyecz B, Péter M, Vedelek V, Kovács AL, Juhász G, Maróy P, et al. Reduced expression of CDP-DAG synthase changes lipid composition and leads to male sterility in Drosophila. Open Biol. 2016;6(1):50169. https://doi.org/10.1098/rsob.150169.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Francou MM, Hombrebueno JR, De Juan J. Identification and cellular location of glutamine synthetase in human sperm. Cell Tissue Res. 2012;350(1):183–7. https://doi.org/10.1007/s00441-012-1465-x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tas GG, Soygur B, Kutlu O, Sati L. A comprehensive investigation of human endogenous retroviral syncytin proteins and their receptors in men with normozoospermia and impaired semen quality. J Assist Reprod Genet. 2023;40(1):97–111. https://doi.org/10.1007/s10815-022-02673-z.

    Article 
    PubMed 

    Google Scholar
     

  • Srivastava S, Desai P, Coutinho E, Govil G. Mechanism of action of L-arginine on the vitality of spermatozoa is primarily through increased biosynthesis of nitric oxide. Biol Reprod. 2006;74(5):954–8. https://doi.org/10.1095/biolreprod.105.046896.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link