Scientific Papers

Evaluation of the TLR3 involvement during Schistosoma japonicum-induced pathology | BMC Immunology


  • Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis. 2006;6(7):411–25.

    Article 
    PubMed 

    Google Scholar
     

  • Tang J, Huang H, Ji X, et al. Involvement of IL-13 and tissue transglutaminase in liver granuloma and fibrosis after schistosoma japonicum infection. Mediat Inflamm. 2014;2014:753483.

    Article 

    Google Scholar
     

  • Cha H, Qin W, Yang Q, et al. Differential pulmonic NK and NKT cell responses in Schistosoma japonicum-infected mice. Parasitol Res. 2017;116(2):559–67.

    Article 
    PubMed 

    Google Scholar
     

  • Chen D, Xie H, Luo X, et al. Roles of Th17 cells in pulmonary granulomas induced by Schistosoma japonicum in C57BL/6 mice. Cell Immunol. 2013;285(1–2):149–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beetz S, Wesch D, Marischen L, Welte S, Oberg HH, Kabelitz D. Innate immune functions of human gammadelta T cells. Immunobiology. 2008;213(3–4):173–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie H, Chen D, Li L, et al. Immune response of γδT cells in Schistosome japonicum-infected C57BL/6 mouse liver. Parasite Immunol. 2014;36(12):658–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen D, Luo X, Xie H, Gao Z, Fang H, Huang J. Characteristics of IL-17 induction by Schistosoma japonicum infection in C57BL/6 mouse liver. Immunology. 2013;139(4):523–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williamson T, Sultanpuram N, Sendi H. The role of liver microenvironment in hepatic metastasis. Clin Transl Med. 2019;8(1):21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benseler V, Schlitt HJ. The liver as an immunological organ. Z Gastroenterol. 2011;49(1):54–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jewell AP. Is the liver an important site for the development of immune tolerance to tumours. Med Hypotheses. 2005;64(4):751–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng Y, Xie H, Shi F, et al. Roles of TLR7 in Schistosoma japonicum infection-induced hepatic pathological changes in C57BL/6 mice. Front Cell Infect Microbiol. 2021;11:754299.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng B, Zhang J, Chen H, et al. T lymphocyte-mediated liver immunopathology of schistosomiasis. Front Immunol. 2020;11:61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panchapakesan U, Pollock C. The role of toll-like receptors in diabetic kidney disease. Curr Opin Nephrol Hypertens. 2018;27(1):30–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2(8):675–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choe JY, Crain B, Wu SR, Corr M. Interleukin 1 receptor dependence of serum transferred arthritis can be circumvented by toll-like receptor 4 signaling. J Exp Med. 2003;197(4):537–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: TLR3 agonists in cancer therapy. Oncoimmunology. 2020;9(1):1771143.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang W, Wang WH, Azadzoi KM, et al. Activation of innate antiviral immune response via double-stranded RNA-dependent RLR receptor-mediated necroptosis. Sci Rep. 2016;6:22550.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watanabe A, Tatematsu M, Saeki K, et al. Raftlin is involved in the nucleocapture complex to induce poly(I:C)-mediated TLR3 activation. J Biol Chem. 2011;286(12):10702–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galluzzi L, Green DR. Autophagy-independent functions of the autophagy machinery. Cell. 2019;177(7):1682–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hase K, Contu VR, Kabuta C, et al. Cytosolic domain of SIDT2 carries an arginine-rich motif that binds to RNA/DNA and is important for the direct transport of nucleic acids into lysosomes. Autophagy. 2020;16(11):1974–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bortolotti D, Gentili V, Rizzo S, et al. TLR3 and TLR7 RNA sensor activation during SARS-CoV-2 infection. Microorganisms. 2021;9(9)

  • Mielcarska MB, Bossowska-Nowicka M, Toka FN. Functional failure of TLR3 and its signaling components contribute to herpes simplex encephalitis. J Neuroimmunol. 2018;316:65–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jannuzzi GP, de Almeida J, Amarante-Mendes GP, et al. TLR3 is a negative regulator of immune responses against Paracoccidioides brasiliensis. Front Cell Infect Microbiol. 2018;8:426.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen D, Zhao Y, Feng Y, et al. Expression of TLR2, TLR3, TLR4, and TLR7 on pulmonary lymphocytes of Schistosoma japonicum-infected C57BL/6 mice. Innate Immun. 2019;25(4):224–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas PG, Carter MR, Atochina O, et al. Maturation of dendritic cell 2 phenotype by a helminth glycan uses a toll-like receptor 4-dependent mechanism. J Immunol. 2003;171(11):5837–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aksoy E, Zouain CS, Vanhoutte F, et al. Double-stranded RNAs from the helminth parasite Schistosoma activate TLR3 in dendritic cells. J Biol Chem. 2005;280(1):277–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qu J, Li L, Xie H, et al. TLR3 modulates the response of NK cells against Schistosoma japonicum. J Immunol Res. 2018;2018:7519856.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gárate I, García-Bueno B, Madrigal JL, et al. Toll-like 4 receptor inhibitor TAK-242 decreases neuroinflammation in rat brain frontal cortex after stress. J Neuroinflammation. 2014;11:8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsushima N, Tanaka T, Enkhbayar P, et al. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Genomics. 2007;8:124.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashour DS. Toll-like receptor signaling in parasitic infections. Expert Rev Clin Immunol. 2015;11(6):771–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barton GM, Medzhitov R. Toll-like receptor signaling pathways. Science. 2003;300(5625):1524–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joshi AD, Schaller MA, Lukacs NW, Kunkel SL, Hogaboam CM. TLR3 modulates immunopathology during a Schistosoma mansoni egg-driven Th2 response in the lung. Eur J Immunol. 2008;38(12):3436–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saad AE, Ashour DS, Osman EM. Different panel of toll-like receptors expression during chronic Schistosoma mansoni infection in experimental animals. Exp Parasitol. 2022;239:108317.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Regel I, Raulefs S, Benitz S, et al. Loss of TLR3 and its downstream signaling accelerates acinar cell damage in the acute phase of pancreatitis. Pancreatology. 2019;19(1):149–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murakami Y, Fukui R, Motoi Y, et al. Roles of the cleaved N-terminal TLR3 fragment and cell surface TLR3 in double-stranded RNA sensing. J Immunol. 2014;193(10):5208–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takaki H, Kure S, Oshiumi H, et al. Toll-like receptor 3 in nasal CD103+ dendritic cells is involved in immunoglobulin a production. Mucosal Immunol. 2018;11(1):82–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar R, Gong H, Liu L, Ramos-Solis N, Seye CI, Derbigny WA. TLR3 deficiency exacerbates the loss of epithelial barrier function during genital tract Chlamydia muridarum infection. PLoS One. 2019;14(1):e0207422.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsumoto M, Seya T. TLR3: interferon induction by double-stranded RNA including poly(I:C). Adv Drug Deliv Rev. 2008;60(7):805–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu H, Zhou RH, Liu Y, et al. HIV infection suppresses TLR3 activation-mediated antiviral immunity in microglia and macrophages. Immunology. 2020;160(3):269–79.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halstead NT, Hoover CM, Arakala A, et al. Agrochemicals increase risk of human schistosomiasis by supporting higher densities of intermediate hosts. Nat Commun. 2018;9(1):837.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang SY, Herman M, Ciancanelli MJ, et al. TLR3 immunity to infection in mice and humans. Curr Opin Immunol. 2013;25(1):19–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keswani T, Delcroix-Genete D, Herbert F, et al. Plasmodium yoelii uses a TLR3-dependent pathway to achieve mammalian host parasitism. J Immunol. 2020;205(11):3071–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song LJ, Yin XR, Mu SS, et al. The differential and dynamic progression of hepatic inflammation and immune responses during liver fibrosis induced by Schistosoma japonicum or carbon tetrachloride in mice. Front Immunol. 2020;11:570524.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai P, Mu Y, Olveda RM, Ross AG, Olveda DU, McManus DP. Serum Exosomal miRNAs for grading hepatic fibrosis due to schistosomiasis. Int J Mol Sci. 2020;21(10)

  • Cai P, Mu Y, Olveda RM, Ross AG, Olveda DU, McManus DP. Circulating miRNAs as footprints for liver fibrosis grading in schistosomiasis. EBioMedicine. 2018;37:334–43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martín P, Gómez M, Lamana A, et al. The leukocyte activation antigen CD69 limits allergic asthma and skin contact hypersensitivity. J Allergy Clin Immunol. 2010;126(2):355–65–365.e1–3.

    Article 
    PubMed 

    Google Scholar
     



  • Source link